
Mobile Robot
Programming
Adventures in Python and C

Second Edition

Thomas Bräunl

Mobile Robot Programming

Thomas Bräunl

Mobile Robot Programming
Adventures in Python and C

Second Edition

Thomas Bräunl

School of Engineering

The University of Western Australia

Perth, WA, Australia

ISBN 978-3-031-32796-4 ISBN 978-3-031-32797-1 (eBook)

https://doi.org/10.1007/978-3-031-32797-1

© Springer Nature Switzerland AG 2020, 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is

concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction

on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic

adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not

imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and

regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed

to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty,

expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been

made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional

affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-32797-1

VV

.
. .
PREFACE

ontrary to common belief, the three most important topics in robotics
are not Mechanics, Electronics and Software. Instead, they are Soft-
ware, Software and Software! While the companion book Embedded

Robotics (4th Edition 2022) keeps a balance between electronics, mechanics
and software, this new book, concentrates mainly on software for mobile
robots. This is where the real challenge lies and where the real innovation is
happening.

In this book we demonstrate how inexpensive mobile robots such as our
EyeBot robots using a Raspberry Pi controller and a camera can be pro-
grammed as well as simulated using our free EyeSim system. This simulator
can realistically model movements of driving, swimming/diving and even
walking robots. Our emphasis is on algorithm development, and we ensure that
all software projects can run on the real robot hardware as well as on the simu-
lation system. This means, we do not use any unrealistic simulation assump-
tions that would never work in the real world.

At The University of Western Australia, we found that students using Eye-
Sim as a supplementary teaching tool in robotics greatly improved their learn-
ing rate and understanding of robotics concepts.

All software used in this book, including all example programs, can be
downloaded from the links below. There are native applications for MacOS,
Windows, Linux and Raspberry Pi – and also in Virtual Reality on the Oculus
Quest.

EyeBot real robots: http://roblab.org/eyebot
EyeSim simulation: http://roblab.org/eyesim

In the following chapters, we will start with simple applications and move
on to progressively more complex applications, from a small, simple driving
robot to a full-size autonomous car.

C

http://roblab.org/eyebot
http://roblab.org/eyesim

Preface

VI

This book contains source code for most of the problems presented. To
keep all these different codes in order, we use a color-coding scheme to distin-
guish:

Tasks and challenges at the end of each chapter will help to deepen the
learned concepts and let readers use their creativity in writing robot programs.

I hope you will enjoy this book and have fun recreating and extending the
applications presented – and then go on to create your own robotics world!

My special thanks go to the UWA students who implemented EyeSim and
also wrote some of the example programs: Travis Povey, Joel Frewin, Michael
Finn and Alexander Arnold. You have done a great job!

Thanks for proofreading of the manuscript go to Linda Barbour at UWA
and the team at Springer Nature.

Perth, Australia, June 2023 Thomas Bräunl

• Python programs
• C/C++ programs
• SIM scripts
• Robot definition files
• Environment data files

VIIVII

.

. .
CONTENTS

1 Robot Hardware 1
1.1 Actuators . 2
1.2 Sensors . 3
1.3 Processor and I/O. 6
1.4 Complete Robot . 7
1.5 Communication . 11
1.6 User Interface. 11
1.7 Simulation . 12
1.8 Tasks . 13

2 Robot Software 15
2.1 Software Installation . 16
2.2 First Steps in Python . 17
2.3 First Steps in C. 18
2.4 Driving a Square in Python . 20
2.5 Driving a Square in C or C++ . 22
2.6 SIM Scripts and Environment Files. 22
2.7 Display and Input Buttons . 24
2.8 Distance Sensors . 25
2.9 Camera . 29
2.10 Robot Communication. 31
2.11 Multitasking . 33
2.12 Using an IDE . 34
2.13 Virtual Reality . 36
2.14 Tasks . 37

3 Driving Algorithms 39
3.1 Random Drive . 39
3.2 Driving to a Target Position . 44
3.3 Turn and Drive Straight . 45
3.4 Circle . 46
3.5 Dog Curve . 48
3.6 Splines . 49
3.7 Tasks . 52

4 Lidar Sensors 53
4.1 Lidar Scans . 53
4.2 Corners and Obstacles . 56
4.3 Tasks . 57

VIII

Contents

5 Robot Swarms 59
5.1 Setting up a Swarm . 59
5.2 Follow Me . 62
5.3 Multiple Followers. 65
5.4 Tasks . 69

6 Wall Following 71
6.1 Wall Following Algorithm . 71
6.2 Simplified Wall Following Program . 74
6.3 Tasks . 76

7 Alternative Drive Systems 77
7.1 Ackermann Steering . 77
7.2 Omni-directional Drives . 79
7.3 Skid-Steering . 83
7.4 Chain Drives and Terrain. 84
7.5 Tasks . 88

8 Boats and Submarines 89
8.1 Autonomous Boats. 90
8.2 Autonomous Submarines. 91
8.3 Simulating Boats and Submarines . 91
8.4 Submarine Diving . 94
8.5 Submarine Movement . 95
8.6 Tasks . 96

9 Mazes 97
9.1 Micromouse . 98
9.2 Wall Following . 98
9.3 Robustness and Control . 102
9.4 Maze Driving with Lidar . 104
9.5 Recursive Maze Exploration . 108
9.6 Flood-Fill . 112
9.7 Shortest Path . 113
9.8 Tasks . 116

10 Navigation 117
10.1 Navigation in Unknown Environments . 117
10.2 DistBug Algorithm . 118
10.3 Navigation in Known Environments . 122
10.4 Quadtrees . 123
10.5 Quadtree Implementation . 124
10.6 Shortest Path Algorithm . 129
10.7 Tasks . 131

11 Robot Vision 133
11.1 Camera and Screen Functions . 133
11.2 Edge Detection. 135
11.3 OpenCV . 139
11.4 Color Detection . 140

IXIX

Contents

11.5 Motion Detection . 146
11.6 Tasks . 149

12 Learning Robots 151
12.1 Starman . 152
12.2 Motion Model . 154
12.3 Genetic Algorithms . 155
12.4 Evolution Run . 159
12.5 Tasks . 160

13 Traffic Models 161
13.1 Autonomous Model Car Competitions . 161
13.2 Carolo-Cup . 162
13.3 Lane Keeping. 164
13.4 Intersections and Zebra Crossings . 165
13.5 Traffic Sign Recognition . 166
13.6 End-to-End Learning . 168
13.7 Tasks . 170

14 Autonomous Cars 171
14.1 Electric Drive System . 171
14.2 Drive by Wire . 172
14.3 Sensors and Safety Systems. 173
14.4 Formula-SAE Autonomous . 175
14.5 Formula-SAE Simulation . 176
14.6 Autonomous Road Vehicles . 180
14.7 Tasks . 182

15 Outlook 183

Appendix 185

11

1
.

. .
ROBOT HARDWARE

n this book, we will talk about a number of fundamentally different
mobile robots – from small basic driving robots, via autonomous subma-
rines and legged robots, all the way to driverless cars. We will start with

small driving robots and in this chapter we will present a brief description (and
building guideline) for mobile robot hardware. However, if your main focus is
on robot software, you can skip this chapter and start straight with software for
the robot simulation system in Chapter 2.

At the Robotics and Automation Lab at The University of Western Austra-
lia, we have developed the EyeBot Family (see Figure 1.1), a diverse group of
mobile robots, including wheeled, tracked, legged, flying and underwater
robots [Bräunl 2022]1. Each robot has a camera as the main sensor, some dis-
tance sensors, and a touchscreen LCD as its user interface.

I

Figure 1.1: EyeBot mobile robot family

1 T. Bräunl, Embedded Robotics – From Mobile Robots to Autonomous Vehicles with Rasp-
berry Pi and Arduino, 4th Ed., Springer Nature, Singapore, 2022

© Springer Nature Switzerland AG 2023

T. Bräunl, Mobile Robot Programming, https://doi.org/10.1007/978-3-031-32797-1_1

https://doi.org/10.1007/978-3-031-32797-1_1
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32797-1_1&domain=pdf

Robot Hardware

2

1
All of our small robots are closely linked to Embedded Systems. They com-

prise an on-board computer system, which is connected to actuators and sen-
sors. It continuously reads sensor input to get information about the world sur-
rounding it, and then reacts by sending commands to its actuators. Actuators
are mostly electric motors, such as wheel motors or leg-servos, but could also
be pneumatic or hydraulic actuators, solenoids, relays or solid state electronic
switches.

1.1 Actuators
Motors A driving robot’s motion capability comes from a number of actuators – in

most cases these are two electric motors. Each motor is driven independently
and the main controller, e.g. a Raspberry Pi, sends signals for the desired
speeds. However, a motor can never be directly connected to a microcontroller
without a motor driver chip, as it draws a lot more current than a standard out-
put pin can supply. Therefore, we designed an interface board (EyeBot I/O
controller) which links a Raspberry Pi controller to a robot’s sensors and
motors, and also provides two motor drivers.

A motor generally increases its speed with the analog voltage supplied to it
while its direction of rotation changes with the polarity of the supplied voltage.
As we cannot easily generate analog voltages from a digital microcontroller,
we use the method of ‘pulse width modulation’ as a digital equivalent. With
this, the full supply voltage (e.g. 5V) is turned on and off very rapidly (e.g. at
1,000 Hz), so the effect on the motor is identical to supplying a lower analog
voltage matching this ratio. As can be seen in Figure 1.2, different percentage

Figure 1.2: Motor output from pulse width modulation at 20% and 50%

Sensors

3

settings will result in rectangle output functions of corresponding ‘up-times’
and ‘down-times’, which will let the connected motor spin at the desired idle
speed.

Drive System The simplest mechanical drive system one can imagine is called differential
drive, which is a robot platform that has two separately controlled wheel
motors attached to it (see Figure 1.3). If both motors are driven forward at
equal speed, then the robot is driving forward in a straight line. If one motor is
running faster than the other, e.g. the left motor is going faster than the right
motor, then the robot will drive in a curve – in this case a right (or clockwise)
curve. Finally, if one motor is going forward (e.g. the left) and the other motor
backwards, then the robot is turning on the spot (here: clockwise).

1.2 Sensors
The drive system is only one half of a mobile robot. The other half is sensing.
Even for our simplest robots we use three types of sensors, which are in order
of increasing complexity: shaft encoders, infrared distance sensors and digital
cameras.

Figure 1.3: Differential drive principle

Figure 1.4: Incremental encoder (left); motor with encapsulated gearbox
and encoder (right)

Robot Hardware

4

1
Shaft Encoders Shaft encoders are simple sensors which provide feedback that is mainly used

to control the speed of a robot’s motors (velocity control and position control).
For optical encoders, either a reflective disk or a slotted disk (see Figure 1.4)
can be used to alternate between letting an infrared LED beam through and
blocking it during the disk’s rotation. While the wheel is rotating, this gener-
ates a rectangle signal (Figure 1.5).

Using a reflective disk with alternating white and black sectors (Siemens
Star) works in the same way, only that LED and detector are on the same side
of the disk.

Shaft encoders can also be used to measure short distances that a robot has
travelled (position control). The left and right sensor output count can be trans-
lated via the robot’s kinematics formula into a change of its translational and
rotational position (pose). Unfortunately, this only works for smaller distances
and when the robot’s wheels are firmly on the ground. Over larger distances
the small inaccuracies will add up, and soon the calculated pose will become
unusable.

Distance Sensors Infrared distance sensors are also known as Position Sensitive Devices (PSD).
They emit a light beam invisible to the human eye and use the reflection from
an object to calculate a distance value. On our robot systems, we typically use
four PSD sensors, one for each direction.

Figure 1.5: Encoder disk principle (left); encoder output signal for slow-
fast-slow rotations (right)

Figure 1.6: Sharp PSD sensor (left) and measurement principle (right)

Sensors

5

Simple distance sensors use an infrared detector array to calculate the object
distance. Depending on the position where the reflected beam lands on the sen-
sor array, the closer or further away the object is (see Figure 1.6, right). Infra-
red PSDs come in a variety of different shapes, forms and interfaces (analog or
digital), as in Figure 1.6, left.

Higher precision distance sensors use a laser-based time-of-flight principle.
For the EyeBot-8 interface board we are using the tiny VL53L0X sensor from
ST Microelectronics on a Pololu carrier board (see Figure 1.7). The actual sen-
sor measures only about 2mm × 4mm and has SMD contacts, so this sensor
chip is next to impossible to solder for hobbyists. Using a ready-made carrier
board makes integration a lot easier.

Cameras A digital camera is a much more complex and powerful sensor than the ones
mentioned before. It delivers millions of pixels per image frame, several times
per second. At the very moderate VGA2 resolution there are 640×480 pixels
with 3 Bytes each at 25 Hertz (PAL3) or 30 Hertz (NTSC4), so over 23 MB/s
for PAL and almost 28 MB/s for NTSC. Figure 1.8 shows our own EyeCam
system (left) next to a modern Raspberry Pi camera module (right). The stand-
ard Raspberry Pi camera has a fixed non-changeable lens, but there are third-
party cameras available with adjustable and interchangeable board lenses. For
those cameras, lenses with a wider field-of-view angle are available (even fish-
eye lenses), which are better suited for driving robots. A large variety of board
lenses is available to suit most applications.

Figure 1.7: Time-of-flight laser ranging sensor and placement on EyeBot

2 VGA: Virtual Graphics Adapter; an image resolution of 640×480 pixels, first introduced for
the IBM PS/2 in 1987

3 PAL: Phase Alternating Line; the European analog TV standard with 625 lines at 25 frames
(50 alternating half-frames) per second, matching a 50Hz mains power frequency

4 NTSC: National Television System Committee (also jokingly called “never the same
color”); the North-American analog TV standard with 525 lines at 30 frames (60 alternating
half-frames) per second, matching a 60Hz mains power frequency

Robot Hardware

6

1

As the sheer amount of data requires a powerful controller for processing,
we usually work with a relatively low image resolution to maintain an overall
processing speed of 10 fps (frames per second) or more. The images in Figure
1.9 have been taken at a resolution of 80×60 pixels – probably as low as one
would like to go, but as you can see they still contain a rich amount of visible
detail.

1.3 Processor and I/O
Actuators and sensors have to be interfaced to an embedded controller. Our
choice was a Raspberry Pi (Figure 1.10, left) in combination with our own
EyeBot-8 interface board for sensor I/O and motor drivers (Figure 1.10, right).
Unlike our previous interface boards, this new one does not contain its own
processor. Instead, its I/O hardware is directly linked to the Raspberry Pi via
input/output data lines. The EyeBot board piggybacks onto the Raspberry Pi
(hat) and does not require any additional communication or power cables.
Rechargeable batteries are connected to the EyeBot board, which then pro-

Figure 1.8: EyeCam M4 (left) and Raspberry Pi camera (right)

Figure 1.9: Sample images with a resolution of 80×60 pixels

Complete Robot

7

vides the Raspberry Pi with its required 5V supply. The EyeBot-8 board pro-
vides a number of interfaces that the Raspberry Pi does not have:

• 2 H-bridge motor drivers
• 2 Encoder inputs
• 4 Servo outputs
• 4 Ports for STM/Pololu laser ranging sensors
• 1 Analog input for battery voltage measurement
• 1 Power regulator for Raspberry Pi
• 1 Camera mount
• 1 On/off switch

Overall, this board design helps in creating a nice, compact package for a
robot design. Although optional, we use a 4.3” color touchscreen on all our
robot models, which slots in above the EyeBot board. With this, we can easily
start and stop application programs, display sensor values, or change parame-
ters. A display is always an invaluable tool for testing and debugging.

1.4 Complete Robot
Putting it all together lets us build a complete robot. We can start with a very
simple rectangular carrier board made from timber, plastic or aluminium.
Underneath we mount the two motors and a free roller, to give the robot a
three-point support system We also place the battery holder underneath,
because there is space and it gives the robot a cleaner look.

For this design we use the ‘protected’ version of the Lithium-based 18650
batteries. These have a special electronics board included in each cell, which
prevents over-charging as well as deep-discharging. In the past we used unpro-
tected rechargeable AA and LiPo cells, but we lost too many batteries due to
accidental deep-discharging. The protected 18650s are a few millimeters
longer than their regular version, so they do not fit into the standard battery

Figure 1.10: Raspberry Pi controller (left) and EyeBot M7 I/O-board (right)

Robot Hardware

8

1

holders. We solved this by cutting the battery holders into two pieces, which
we spaced out by a few millimeters (Figure 1.11).

On top of the carrier board, we only have to mount the controller stack with
four M2.5 screws. The stack contains (from bottom to top) the Raspberry Pi
controller, the EyeBot interface board and the touchscreen display. Up to four
laser distance sensors are mounted around the EyeBot board, which also holds
the camera in place. The two motors with encoders are simply plugged into the
corresponding sockets on the sides of the EyeBot board. This gives it a very
compact design (Figure 1.12).

Figure 1.11: From empty plate to finished robot

Figure 1.12: Simple robot design top and bottom

Complete Robot

9

Figure 1.13 shows on the left our SoccerBot S4 robot, which uses the same
controller stack of Raspberry PI / EyeBot / LCD. On the right is the even
smaller Mule vehicle. Mule does not use the EyeBot interface board, so it can-
not use shaft encoders and distance sensors, and it requires a separate motor
controller board which is attached to its side.

The diagram in Figure 1.14 shows the principal robot hardware setup. Dis-
play, camera and high-level sensors (e.g. GPS, IMU, Lidar etc. with either
USB or LAN connection) are directly linked to the Raspberry Pi controller.
The EyeBot-8 interface board builds the bridge to the drive motors, servos and
low-level sensors. It communicates via digital I/O pins with the Raspberry Pi.

Figure 1.13: SoccerBot S4 (left), and Mule simple robot chassis (right)

Figure 1.14: Robot system structure with I/O controller board

Robot Hardware

10

1
An even simpler robot design without a dedicated interface board can be

built by adapting a model car. Such a design has to make do without PSD sen-
sors and motor encoders; its principles are shown in Figure 1.15.

When using a model car platform that has a built-in servo for steering and a
digital motor controller for driving, then we only need two PWM (pulse-width
modulation) output lines for interfacing the car to a Raspberry Pi controller.
However, the Raspberry Pi only has a single hardware PWM output line, all
other output lines use software for generating a PWM signal. Since we do not
use a real-time operating system on the Raspberry Pi, there can be some
noticeable jitter in the steering servo due to timing variations in the processing
of different tasks on the controller. Although there will be similar variations
for the drive motor control, these variations tend to matter less and are barely
noticeable.

The approach without an interface board can be used for building a cheap,
minimal configuration driving platform, but of course it lacks the low-level
sensors, especially shaft encoders. While it may not be suitable for precision
driving, such a robot model car will allow for much higher driving speeds.

A similar approach has been used for the very basic Mule robot chassis
shown in Figure 1.13, right. The link between the Raspberry Pi and the two
differential drive motors is a cheap motor driver board attached to the side of
the Pi, while the camera is velcroed to the front. The whole robot is powered
by a USB power bank. As before, this approach misses feedback from wheel
encoders and distance sensors, which would require an interface board. For
further details on drive mechanics, electronics hardware and system software
see the EyeBot User Guide [Bräunl et al. 2023]5.

5 T. Bräunl, M. Pham, F. Hidalgo, R. Keat, EyeBot 8 User Guide, 2023,
http://roblab.org/eyebot/

Figure 1.15: Robot system structure without I/O controller board

http://roblab.org/eyebot/

Communication

11

1.5 Communication
Each robot is an independent autonomous vehicle. However, it is highly desir-
able even for a single robot to have a wireless communication link to a laptop
or desktop PC in order to transfer programs to the robot and data back from it.
When using more than one robot, we would like to have a communication net-
work that lets the robots communicate with each other.

Our network is based on the Raspberry Pi’s built-in WiFi module. As a
default, each robot has its own WiFi hotspot, so we can easily connect to it
with a laptop, tablet or smartphone.
The default WiFi hotspot network name and password are:

PI_12345678 and raspberry
where the number is automatically derived from the Pi’s MAC address, allow-
ing the operation of several independent robots in the same room.

The default IP address for WiFi is easy to remember:
10.1.1.1

The default username and password for our EyeBot-Raspian distribution are:
pi and rasp

When using a LAN cable to connect, it is the same username and password,
with an equally simple default IP address:

10.0.0.1
When using several robots as a group, their network setting can be changed to
“slave”, linking them to a common DHCP6 WiFi router. That way, all robots
can talk to each other directly, as well as to a base station, e.g. the operator’s
laptop computer.

1.6 User Interface
Although technically not really necessary, all of our robots carry a user inter-
face in the form of a touchscreen display (see Figure 1.16). With this, the robot
can display sensor and measurement results, and the user can enter commands
or select parameters using soft buttons. This interface works with the physical
LCD on the “back” of the real robot, in a laptop window via remote desktop
over WiFi or even in simulation.

6 A DHCP router (Dynamic Host Configuration Protocol) assigns each WiFi client a unique
IP (Internet Protocol) address.

Robot Hardware

12

1

1.7 Simulation
In the following chapters of this book we will frequently work with simulation.
We should stress that we have created a very realistic approximation of real
robot behavior in EyeSim. Robot programs can be directly transferred from the
simulation to the real robot without having to change a single line of source
code. There are no unrealistic assumptions, no virtual (wishful) sensors, no
“cheats”. Even the error settings are very realistic and can be adapted. There is
no perfect world: a robot being told to drive 1.0m will always deviate a little
bit (e.g. drive 0.99m or 1.01m) and sensor readings are not always 100% cor-
rect either – and our simulation environment reflects this.

We have re-implemented the EyeSim simulation system several times from
scratch since the first version some 20 years ago. The latest version is called
EyeSim-VR (Figure 1.17) and runs natively on MacOS, Windows and Linux.

Figure 1.16: Real robot touchscreen (left) and remote desktop (right)

Figure 1.17: EyeSim-VR simulation of a robot scene

Tasks

13

We even have a version for Oculus Quest VR (Virtual Reality) devices. Eye-
Sim-VR was implemented by Travis Povey and Joel Frewin in 2018 and
extended by Alexander Arnold and Michael Finn in 2019. The VR version was
implemented by Jairus Wong in 2023.

We decided to structure this book in a project-based fashion, where it does
not really matter whether we work with real or simulated robots – algorithms
and program code will be identical. In the following chapters we will start with
simple robotics tasks and develop more complex applications step-by-step.

1.8 Tasks

• Configure your ideal mobile robot by selecting wheels, actuators (motors) and sensors,
such as a camera, PSDs, etc.

• Make a spreadsheet showing part numbers, quantities, suppliers and cost.
• Make a CAD drawing of your robot design, considering dimensions of all components.
• Build it!

1515

2
.

. .
ROBOT SOFTWARE

yeSim is a realistic mobile robot simulation system, developed by the
Robotics & Automation Lab at The University of Western Australia.
EyeSim is distributed free of charge and supports a number of different

robot types and sensors with realistic, close-to-reality motion patterns. EyeSim
robot simulation source code can be directly ported to the physical EyeBot
robots without changing a single line of code. Supported programming lan-
guages are Python, C and C++.

Included in EyeSim are various wheeled and tracked driving robots, omni-
directional robots with Mecanum wheels, various AUVs (autonomous under-
water robots), the legged robot Starman, as well as various robot manipulators.
More information is available in the EyeSim User Manual1 and on the EyeSim
web page (see Figure 2.1) at

http://roblab.org/eyesim

1 EyeSim VR Team, EyeSim User Manual, 2018, roblab.org/eyesim/ftp/EyeSim-User
Manual.pdf

E

Figure 2.1: EyeSim VR website

© Springer Nature Switzerland AG 2023

T. Bräunl, Mobile Robot Programming, https://doi.org/10.1007/978-3-031-32797-1_2

http://roblab.org/eyesim
https://doi.org/10.1007/978-3-031-32797-1_2
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32797-1_2&domain=pdf

Robot Software

16

2
For downloading, select the software package matching your operating sys-

tem and hardware: MacOS (Intel), MacOS (M), Windows or Linux. EyeSim
has been implemented using the Unity 3D2 games engine, which allows it to
run natively on each of these platforms. Its built-in physics engine makes all
robot movements very realistic.

Additional system requirements are X11 libraries for MacOS and Win-
dows, and our adapted version of Cygwin for Windows. Additional packages,
such as OpenCV3 are required for image processing applications.

2.1 Software Installation
While the Windows version of EyeSim automatically installs the Cygwin
package, Mac OS users need to separately install the free XQuartz library. No
additional packages are required for Linux users. The EyeSim software pack-
ages are located at
 http://roblab.org/eyesim/ftp/
with a large library of application programs
 EyeSim-Examples.zip

2 Unity 3D, https://unity3d.com
3 OpenCV is the Open Source Computer Vision Library, see OpenCV.org

Figure 2.2: RoBIOS-7 API functions

http://roblab.org/eyesim/ftp/
https://unity3d.com

First Steps in Python

17

After installation, have a look at the EyeSim User Manual
 EyeSim-UserManual.pdf

The key to robot control is the set of functions that form the RoBIOS API
(Robot Basic I/O System – Application Programmer Interface). This is inclu-
ded in the EyeBot User Guide or can be seen on the web at

http://roblab.org/eyebot/robios.html

Figure 2.2 gives an overview of RoBIOS print functions; the complete list
of RoBIOS functions is included in the Appendix of this book.

After installing EyeSim, you should have a robot symbol like the one on the
left on your task bar. Clicking on this will start the EyeSim simulator with a
default environment in which a single robot has been placed (see Figure 2.3).

This startup scenario can be changed via the File/Settings menu. In your
environment you can have multiple robots, several objects, walls, markers,
colors and textures, 3D terrain and even water. We will come back to this later.

2.2 First Steps in Python
For now, we will just try to get this robot moving. The relevant RoBIOS com-
mand for this is

int VWSetSpeed(int linSpeed, int angSpeed)
which we call the v-ω (v-omega) driving interface, as we can specify a linear
velocity v and an angular velocity ω for the robot. If v is given a certain value
and ω=0, the robot should be driving straight. With v=0 and ω set to a fixed

Figure 2.3: EyeSim default environment

http://roblab.org/eyebot/robios.html

Robot Software

18

2
value, the robot should be rotating in place, and if both v and ω get non-zero
values, the robot will be driving a curve of some sort. Let’s try this out!

The easiest start is using Python, but we will repeat this example in C as
well. After starting EyeSim and having a robot ready as shown in Figure 2.3,
open a command window and type

python3

or start a programming environment such as Thonny or PyCharm. After the
Python command prompt, type your robot program line by line

from eye import *

This will make all the RoBIOS API commands available. Then type your
first driving command, e.g.

VWSetSpeed(100,0)

which will set the robot on a straight path at 100mm/s with zero rotational
speed. In the command window you will see the system dialog of Program 2.1.

Program 2.1: Programming robot from command line in Python

At the same time in the EyeSim window you can see the robot driving for-
ward. In fact, if we are not quick enough to stop it with

VWSetSpeed(0,0)

it will hit the back wall (Figure 2.4). No problem, it is only a simulated robot,
so no damage has been done. You can click on it and move it back to the mid-
dle of the field. With the + and – keys you can also rotate the robot to any
angle.

2.3 First Steps in C
Driving straight in C is done by the equivalent program in Program 2.2. But
then we cannot simply type a command to stop it, so unless we pause the sim-
ulator, the robot will collide with the wall.

The include statement makes the RoBIOS API available, and all C pro-
grams require a main function definition as the program start. The only state-
ment in this program is the VWSetSpeed command. Note the required semico-

First Steps in C

19

lon after the statement and the curly brackets encapsulating the function defini-
tion. You will need a lot of these in C.

As C is compiled and not interpreted as with Python, we have to do the
compilation step of our source program before we can run it. Although this
may seem like unnecessary extra work, it is actually quite beneficial, as it
checks the source code for errors and will report them. In contrast, Python will
start running a program immediately and may later stop in the middle of the
execution when it encounters an error.

Program 2.3: Compiling and executing a C program

Figure 2.4: Robot driving straight using Python or C program

Program 2.2: Robot controlled by program in C

1 #include "eyebot.h"
2 int main ()
3 { VWSetSpeed(100, 0);
4 }

Robot Software

20

2
Compilation in C is simple with the gccsim script we put together (see Pro-

gram 2.3). The first parameter is the C source file and the “-o” option lets you
specify the name of the binary output file

gccsim straight.c -o straight.x

For all EyeSim example directories we provide so-called Makefiles, which
greatly simplify compilation of C and C++ programs. With the correct Make-
file in place, all you have to type for compilation is a single word

make

Assuming we have started the EyeSim simulator already and have a robot
waiting for commands, we can now run our program

./straight.x

Linux always requires us to specify the directory when executing a com-
mand, so if the executable program straight.x is in our current directory, we
have to prefix it with “./”.

2.4 Driving a Square in Python
Let us take this up a notch and try to drive the robot around a square. For this,
we use two other API commands for driving straight and for rotating in place.
These commands will stop the robot automatically after the desired distance or
angle has been reached

int VWStraight(int dist, int lin_speed)
int VWTurn(int angle, int ang_speed)

The parameters are in [mm] and [mm/s] for VWStraight and [degrees] and
[degrees/s] for VWTurn. Program 2.4 shows the complete Python program to
drive one square.

We repeat the sequence of driving straight followed by turning in place four
times. The for-loop’s parameters (0,4) indicate that the counter x will start at 0
and run over four iterations (using values 0, 1, 2, 3 for x), which is exactly
what we are after.

The calls to VWWait after each driving command are necessary as the com-
mands VWStraight and VWTurn will give control back to the program immedi-
ately and any subsequent driving command will override the previous one. So,
if you forget to put VWWait into your code, the program will very quickly dash

Program 2.4: Driving a square in Python

1 from eye import *
2
3 for x in range (0,4):
4 VWStraight(300,500)
5 VWWait()
6 VWTurn(90, 100)
7 VWWait()

Driving a Square in Python

21

through all commands and then terminate before the robot even had a chance
to move from its starting position.

The simulator’s menu command File / Settings / Visualization allows us to
turn on visualization of the robot’s path or “trail” (Figure 2.5), which will
make it easier for us to explain its movements. With this set, the square pro-
gram will mark the robot’s movements on the floor (see Figure 2.6).

Finally, rather than typing the driving commands directly into the Python3
interpreter, we can put them into a file, e.g. square.py. We can then call the
program with the command

python3 square.py

Or, to go one step further, we make the source file square.py executable (by
changing its file permissions) and then add the name of the Python3 interpreter
as the very first line

#!/usr/bin/env python3

Now we can start the Python program even more easily, directly from the
command line

./square.py

Figure 2.5: Visualization settings in EyeSim’s menu

Figure 2.6: Robot completing the square program

Robot Software

22

2

2.5 Driving a Square in C or C++
Using C or C++ for the same driving task is not much more difficult, as shown
in Program 2.5. The commands are identical, but C has its own syntax for
including the EyeBot/RoBIOS library and needs a main function, which tells
the system where the program starts.

The for-loop is a bit wordier but does the same as in Python; it just runs the
statement block between the inner curly brackets “{“ and “}” four times. As
before, VWStraight and VWTurn need to be followed by VWWait statements,
to ensure that they are completely executed, before progressing to the next
drive command.

2.6 SIM Scripts and Environment Files
We can now write, compile (C/C++ only) and execute a robot program. But
when we are setting up more and more complex scenarios with structured driv-
ing environments, multiple robots and numerous objects in a scene, we could
use some help so that we do not have to manually place all components in the
environment again and again. This can be achieved by using a “.sim” script file
like the one shown in Program 2.6.

Besides the comments (starting with “#”), there are only two items in this
SIM script: the world command selects a file that describes the driving envi-
ronment, and the S4 command places an S4-type robot into the environment at

Program 2.5: Square driving program in C

1 #include "eyebot.h"
2 int main()
3 { for (int i=0; i<4; i++) // run 4 sides
4 { VWStraight(400, 300); // drive straight 400mm
5 VWWait(); // wait until finished
6 VWTurn(90, 90); // turn 90 degrees
7 VWWait(); // wait until finished
8 }
9 }

Program 2.6: SIM script for a simple world with a single robot placement

1 # Default Environment
2 world rectangle.maz
3
4 # Robot placement
5 S4 1500 300 90 square.py

SIM Scripts and Environment Files

23

the specified (x,y)-coordinates (1500mm in x and 300mm in y) and rotation
angle (90°). The executable file is our Python program square.py – but you
could also replace this with square.x for a C/C++ binary file.

There are many more things that can be done with a SIM script, e.g. chang-
ing settings such as

settings VIS TRACE

which will automatically activate visualization of the robot’s infrared distance
sensors (VIS) and draw its driving path onto the floor (TRACE).

As for driving environments, EyeSim supports two standard input formats:
world-files and maze-files. The maze format is the simpler of the two, allowing
character graphics to construct a driving environment. The characters “_” and
“|” represent horizontal and vertical walls. As an example, we can easily create
an empty rectangle (Figure 2.7, left).

But we could just as easily specify a maze like the ones that are used for the
Micromouse competition [Christiansen 1977]4 that the robot has to navigate
through. Figure 2.7, right, shows an example of a competition maze with an
“S” marking the robot’s starting place, while the goal is always in the center.
More on mazes and how to get out of them will follow in Chapter 9.

Figure 2.7: Rectangle and maze environments from character graphics file

| |
| |
| |
| |
| |
| |
| |
| |
|_____________|

| ___________________________ |
	_______ ___________										
		___		___ ____							
							_______		_		
							_______ _				
							___	___			
						_	___	___			
											_ _
	_____				___				_	_	
	_			_______	___		_				
		_ ___		___ __ __		_					
		___	_______ __ __ __								
_	_	_______	_ __ __								
		_	___	_	_ __ __						
		_	___	___	_	_____					
S	___________	_________________									

4 D. Christiansen, Spectral Lines – Announcing the Amazing MicroMouse Maze Contest,
IEEE Spectrum, vol. 14, no. 5, SPEC 77, May 1977, p. 27 (1)

Robot Software

24

2

2.7 Display and Input Buttons
All of our real robots carry a touchscreen display on top, which is extremely
valuable for displaying data (e.g. sensor values and results), entering parame-
ter values, selecting and starting programs, and so on.

Of course, we have the same functionality in EyeSim – in fact, the simula-
tion system runs the same source code as the physical robots. Below are the
most important RoBIOS API commands for the display

int LCDPrintf(const char *format, ...)
int LCDSetPrintf(int row, int col, const char *format, ...)
int LCDMenu(char *st1, char *st2, char *st3, char *st4)
int LCDClear(void)
int LCDPixel(int x, int y, COLOR col)
int LCDLine(int x1, int y1, int x2, int y2, COLOR col)
int LCDArea(int x1,int y1, int x2,int y2, COLOR c,int fl)
int LCDImage(BYTE *img)
int LCDImageGray(BYTE *g)
int LCDImageBinary(BYTE *b)

Most of these commands should be self-explanatory. They are for writing
text onto the screen, writing text into a specific row and column, labeling the
menu buttons (soft keys), clearing the display, setting a pixel / line / area of
specific color, and displaying a full image onto the screen in either color, gray-
scale or binary format. RoBIOS API commands for reading the push-button
input (soft keys) are

int KEYGet(void) // Blocking read for key
int KEYRead(void) // Non-blocking read
int KEYWait(int key) // Wait until key is pressed

This allows us to enter user commands and also to wait for a confirmation
key to be pressed. Program 2.7 shows a simple “Hello, world!” program in
Python that combines these two features.

The program writes a text line (“Hello ...”) onto the screen, labels each of
the four soft keys and then waits for the user to press any of these buttons.
Note that without the last KEYWait command the program would immediately
terminate, clearing any information that was written onto the display. So this is
a good method to make sure a program only terminates when desired.

Program 2.7: Hello world robot program in Python

1 from eye import *
2
3 LCDPrintf("Hello from EyeBot!")
4 LCDMenu("DONE","BYE","EXIT","OUT")
5 KEYWait(ANYKEY)

Distance Sensors

25

The equivalent application in C is shown in Program 2.8. It has the compul-
sory main function, which could also be included in a Python program. The
actual RoBIOS commands are the same as before.

Running (and compiling) this program results in the screen output shown in
Figure 2.8 (for both Python and C).

2.8 Distance Sensors
So far, we have talked about the basics of controlling a mobile robot, but we
are missing some essential sensor inputs. We start with reading the infrared
PSD (position sensitive devices) sensors, for which the RoBIOS API is

int PSDGet(int psd) // Read distance in mm from sensor

There are four predefined sensors: PSD_FRONT, PSD_LEFT, PSD_RIGHT,
and PSD_BACK with matching locations on the robot.

We can incorporate these sensors into our first program for driving straight,
but this time stopping the robot before it hits the wall. Program 2.9 shows the
code in Python.

Program 2.8: Hello world robot program in C

1 #include "eyebot.h"
2
3 int main()
4 { LCDPrintf("Hello from EyeBot!");
5 LCDMenu("DONE", "BYE", "EXIT", "OUT");
6 KEYWait(ANYKEY);
7 }

Figure 2.8: Hello world output on (simulated) robot screen

Robot Software

26

2

The robot should keep driving while there is at least 200mm clearance in
front of it. When this is no longer the case, it will stop by setting speeds to
(0,0).

Note that we do not have to repeat the VWSetSpeed command inside the
loop. We can set it once at the beginning and then have an empty “busy wait
loop” instead. This is the correct way of doing it, even though it does not look
as nice (Program 2.10).

The corresponding application in C is shown in Program 2.11. It is not
much different from the Python version except for the brackets and semico-
lons. Here, especially, the semicolon following the while-condition is impor-
tant, as this denotes an empty (wait) statement.

If you wanted to save some CPU time, you could insert something like
OSWait(100) for waiting 100 milliseconds (0.1s)

while (PSDGet(PSD_FRONT) > 200) OSWait(100);

In all cases, the robot now avoids a collision and stops 200mm in front of
the wall (Figure 2.9).

Writing the PSD sensor value to the screen is a very good idea to help in
debugging any robot program. Program 2.12 shows the slightly augmented

Program 2.9: Drive-and-stop program (version 1) in Python

1 from eye import *
2
3 while PSDGet(PSD_FRONT) > 200:
4 VWSetSpeed(100,0)
5 VWSetSpeed(0,0)

Program 2.10: Drive-and-stop program (version 2) in Python

1 from eye import *
2
3 VWSetSpeed(100,0)
4 while PSDGet(PSD_FRONT) > 200: # empty wait
5 VWSetSpeed(0,0)

Program 2.11: Drive-and-stop program in C

1 #include "eyebot.h"
2
3 int main()
4 { VWSetSpeed(100,0); /* drive */
5 while (PSDGet(PSD_FRONT) > 200) ; /* wait */
6 VWSetSpeed(0,0); /* stop */
7 }

Distance Sensors

27

code. LCDMenu and KEYWait frame the rest of the code to avoid the program
terminating (and erasing the display) when the robot comes to a stop. We use a
new variable dist for reading and checking the distance to avoid calling the
PSDGet routine twice in each loop iteration.

The equivalent application in C is shown in Program 2.13. C provides a do-
while loop, which checks the termination condition at the end of the loop, mak-
ing coding of this example more elegant.

The screen output now updates the robot’s wall distance while it is moving.
Once the distance value of 200mm has been reached, the robot’s movement (as
well as the printing to the LCD) is stopped (see Figure 2.10).

There are other types of distance sensors, both in simulation as well as on
the real robots. Similar to a PSD, but providing much richer data, is a Lidar
(Light Detection and Ranging) sensor. It is a rotating laser scanner, which

Figure 2.9: Robot driving and stopping in time

Program 2.12: Drive-and-stop program displaying distances in Python

1 from eye import *
2
3 LCDMenu("","","","END")
4 VWSetSpeed(100,0)
5 dist = 1000
6 while dist > 200:
7 dist = PSDGet(PSD_FRONT)
8 LCDPrintf("%d ", dist)
9 VWSetSpeed(0,0)

10 KEYWait(ANYKEY)

Robot Software

28

2

returns several thousand distance points per scan, similar to a large number of
PSDs placed in a circle. We will talk more about Lidar sensors in Chapter 4.

Another sensor group is measuring odometry data. These are incremental
encoders on the robot’s motor shafts, which allow the robot to calculate its
position and orientation from combining its left and right encoder values –
assuming there is no wheel slip, of course. RoBIOS functions VWSetPosition
and VWGetPosition already translate odometry data into a robot’s pose (posi-
tion and orientation), using also the robot’s wheel size, encoder ticks per revo-
lution and wheel distance for the calculation. This data is stored in an HDT
(hardware description table) file on a real robot and in a “.robi” definition file
on a simulated robot. Feel free to explore these additional sensors.

Program 2.13: Drive-and-stop program displaying distances in C

1 #include "eyebot.h"
2
3 int main()
4 { int dist;
5
6 LCDMenu("", "", "", "END");
7 VWSetSpeed(100,0); /* drive */
8 do
9 { dist = PSDGet(PSD_FRONT);

10 LCDPrintf("%d ", dist);
11 } while (dist > 200);
12 VWSetSpeed(0,0); /* stop */
13 KEYWait(ANYKEY);
14 }

Figure 2.10: Distances printed on robot screen until it stops at 200mm

Camera

29

2.9 Camera
Finally, we introduce a robot’s most important sensor, the camera. Each of our
real and simulated robots is equipped with a digital camera. In simulation, the
camera’s position and orientation can be set through the robot’s “.robi” defini-
tion file and it can be placed on top of a (real or simulated) pan-tilt actuator,
which allows us to rotate the camera in two axes during use. The RoBIOS API
for reading a camera image is

int CAMInit(int resolution) // Set camera resolution
int CAMGet(BYTE *buf) // Read color camera image
int CAMGetGray(BYTE *buf) // Read gray scale image

The camera has to be initialized first using CAMInit, which also sets the
desired camera resolution. The most common values for this are VGA
(640×480), QVGA (quarter-VGA, 320×240) or QQVGA (quarter-quarter-
VGA, 160×120). On simulated as well as on real robots, it is often best to start
with the low QQVGA resolution to get a proof of concept running, as it
requires the least processing time.

In the Python example in Program 2.14, CAMInit initializes the camera as
QVGA, so each subsequent call to CAMGet will return an array of 320×240
color values. Each color value has three bytes, one each for a pixel’s red, green
and blue (RGB) component.

With a main function added in Python, similar to a C program, this requires
a few extra lines of code (Program 2.15). The same application in C is shown
in Program 2.16. Being more explicit, the C program clearly defines variable
img as an array of predefined size QVGA_SIZE, which is internally specified
as 320×240×3 (three bytes per pixel). Variable img can then be used as a
parameter for CAMGet and LCDImage. In C we check the termination condi-
tion at the end of the loop, while in Python we can only check it at the start.

While the robot is not moving by itself in this example, you can grab it with
the mouse and move it around the driving environment to see the changes on
the display. Placing a few more objects into the scene as shown in Figure 2.11
will add to the fun.

Program 2.14: Simple camera program in Python

1 from eye import *
2
3 LCDMenu("", "", "", "END")
4 CAMInit(QVGA)
5 while (KEYRead() != KEY4):
6 img = CAMGet()
7 LCDImage(img)

Robot Software

30

2
Program 2.15: Simple camera program with main function in Python

1 from eye import *
2
3 def main():
4 LCDMenu("", "", "", "END")
5 CAMInit(QVGA)
6 while (KEYRead() != KEY4):
7 img = CAMGet()
8 LCDImage(img)
9

10 main()

Program 2.16: Simple camera program in C

1 #include "eyebot.h"
2
3 int main()
4 { BYTE img[QVGA_SIZE];
5 LCDMenu("", "", "", "END");
6 CAMInit(QVGA);
7 do { CAMGet(img);
8 LCDImage(img);
9 } while (KEYRead() != KEY4);

10 return 0;
11 }

Figure 2.11: Camera program output

Robot Communication

31

2.10 Robot Communication
Robots can communicate with each other via the Raspberry Pi’s built-in WiFi
module. We implemented a set of basic communication commands for sending
messages from robot to robot, between a group of robots, or to and from a base
station. These work on the real robots as well as in simulation. The most
important communication commands are

int RADIOInit(void) // Start communication
int RADIOGetID(void) // Get own radio ID
int RADIOSend(int id, char* buf) // Send string to dest.
int RADIOReceive(int *id_no, char* buf, int size) // Rec.
int RADIOStatus(int IDlist[]) // Get robot ID list

A simple ping-pong token transmission example for two robots demon-
strates the usage of this interface. Robot no. 1 will send message “A” to robot
no. 2; after that, each robot returns the received message incremented by one.

When setting up the SIM script, we need two robots to work together. We
choose two different robot types (S4 and LabBot), but they are both running
the same program ping.x (Program 2.17).

In the application in Program 2.18, we first start the communication inter-
face with RADIOInit, and then retrieve the robot’s unique ID number in the
network. In simulation, robots will always be labelled 1, 2, 3 and so on; how-
ever, the ID number for real robots is derived from a robot’s IP address, so it
will depend on the network settings.

The robot with ID number 1 is deemed to be the master5 and immediately
sends message “A” to his partner robot no. 2. From then on, the program is
identical for both robots. Each robot waits for the next message coming in with
RADIOReceive, increments the first character in the message (so robot no. 2
will generate a “B”) and then sends it back. This will run for 10 times until
both programs terminate. The screenshot in Figure 2.12 shows the printout of
both robots side by side.

Program 2.17: SIM script for running two robots

1 # robotname x y phi
2 S4 400 600 0 ping.x
3 LabBot 1000 600 180 ping.x

5 Note that for the real robots, we cannot guarantee that a robot with this number actually ex-
ists, so we need to use the RADIOStatus function to find out all robot IDs in the network and
make the one with the lowest number the master.

Robot Software

32

2
Program 2.18: Radio communication program in C

1 #include "eyebot.h"
2 #define MAX 10
3
4 int main ()
5 { int i, my_id, partner;
6 char buf[MAX];
7
8 RADIOInit();
9 my_id = RADIOGetID();

10 LCDPrintf("my id %d\n", my_id);
11 if (my_id==1) // master only
12 { partner=2; // robot 1 --> robot 2
13 RADIOSend(partner, "A");
14 }
15 else partner=1; // robot 2 --> robot 1
16
17 for (i=0; i<10; i++)
18 { RADIOReceive(&partner, buf, MAX);
19 LCDPrintf("received from %d text %s\n", partner, buf);
20 buf[0]++; // increment first character of message
21 RADIOSend(partner, buf);
22 }
23 KEYWait(KEY4); // make sure window does not close
24 }

Figure 2.12: Screen outputs for robot 1 (left) and robot 2 (right)

Multitasking

33

2.11 Multitasking
Running several tasks in parallel makes a lot of sense for robotics applications
– even if the processor would have to serialize them. We typically have several
different control loops, which have to run at different speeds. For example, one
loop that is reading PSD sensors has to run very quickly to avoid a collision,
while the time-consuming image processing can run at a slower pace (see Fig-
ure 2.13). Although we are not using multitasking in the examples in the fol-
lowing chapters, it is still an essential component for more complex robot pro-
grams.

We use the standard pthreads (POSIX Threads6) package for multitasking,
for which a lot of independent literature is available. In Program 2.19, we use a
mutex (short for mutual exclusion lock) to synchronize two threads that are
running in parallel.

The main program initializes threads and mutex, then starts two slave
threads in parallel (cam and psd), and finally waits for a button press to termi-
nate the whole program. Each slave thread runs an infinite loop reading sensor
data (camera for cam, PSD for psd) and printing it to the screen, together with
a loop counter (i and j). Access to RoBIOS functions must be framed inside a
mutex_lock and mutex_unlock bracket in order to prevent incorrect results and
unpredictable behavior. The mutex lock operation will only let one parallel
thread through, while the second one has to wait for the first thread to do the
unlock operation. Both threads use sleep/usleep to free up processing time.

Figure 2.13: Independent iteration counters for camera and PSD sensors

6 POSIX Threads, Wikipedia, https://en.wikipedia.org/wiki/POSIX_Threads

https://en.wikipedia.org/wiki/POSIX_Threads

Robot Software

34

2

2.12 Using an IDE
There are a number of excellent IDEs (integrated development environments)
available that are free for academic use for Python as well as for C/C++. These
environments make program design and debugging a whole lot easier. They
allow single-stepping through source code, setting breakpoints and examining
variable contents, which are invaluable tools for program development that
significantly increase productivity.

Program 2.19: Multitasking program using pthreads in C

1 #include "eyebot.h"
2 pthread_mutex_t rob;;
3
4 void *cam(void *arg)
5 { int i=0;
6 QVGAcol img;
7 while(1)
8 { pthread_mutex_lock(&rob);
9 CAMGet(img);

10 LCDImage(img);
11 LCDSetPrintf(19,0, "%4d Image ", i++);
12 pthread_mutex_unlock(&rob);
13 sleep(1); // sleep for 1 sec
14 }
15 return NULL;
16 }
17
18 void *psd(void *arg)
19 { int j=0;
20 while(1)
21 { pthread_mutex_lock(&rob);
22 d = PSDGet(PSD_FRONT);
23 LCDSetPrintf(20,0, "%4d Dist=%4d ", j++, d);
24 pthread_mutex_unlock(&rob);
25 usleep(50); // sleep for 0.1 sec
26 }
27 }
28
29 int main()
30 { pthread_t t1, t2;
31 XInitThreads();
32 pthread_mutex_init(&rob, NULL);
33 CAMInit(QVGA);
34 LCDMenu("", "", "", "END");
35 pthread_create(&t2, NULL, cam, (void *) 1);
36 pthread_create(&t1, NULL, psd, (void *) 2);
37 KEYWait(KEY4);
38 pthread_exit(0); // will terminate program
39)

Using an IDE

35

Figure 2.14: Thonny Python IDE

Figure 2.15: CLion C/C++ IDE

Robot Software

36

2
For Python, good choices are Thonny7 (small self-contained package,

shown in Figure 2.14) or PyCharm8 (fully-fledged comprehensive package).
Make sure to set the Python interpreter to Python3 before starting.

For C and C++, a good package is CLion9. In the example in Figure 2.15,
CLion is used to single-step through a C program while examining changes in
variables as well as the robot’s LCD output.

2.13 Virtual Reality
Based on EyeSim, we have developed a VR version that runs on numerous
platforms, but most prominently on the inexpensive Oculus/Meta Quest sys-
tems. With this, you can simply download and install the binary file and
explore various robot applications from this book first-hand as a person in the
scene. You can pick up and move robots, obstacles, etc. and interact with their
driving paths or distance sensors by placing your hands in front of them.

7 Thonny – Python IDE for beginners, https://thonny.org
8 PyCharm – The Python IDE for Professionals and Developers, https://www.jetbrains.com/

pycharm/
9 CLion – A cross-platform IDE for C and C++, https://www.jetbrains.com/clion/

Figure 2.16: EyeSim VR scene

https://thonny.org
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/clion/
https://www.jetbrains.com/pycharm/

Tasks

37

The left hand holds the robot’s EyeBot touchscreen panel where all text and
graphics output from the robot is displayed. The four standard colored buttons
red/green/yellow/blue plus additional control buttons can be easily pressed
with the index finger gesture of the right hand.

New application programs can be written in C#, using a similar API to the
C-language API presented in this book. Figure 2.16 shows a scene from a
robot driving in a VR scenario. The handheld display shows the selected
robot’s output.

2.14 Tasks

• Write a program in Python, C or C++ to drive the robot straight, until it is within
300mm of an obstacle or wall, then let it turn 180° and drive back to its starting point.

• Write a program that drives a robot along a full circle with 1m diameter.
• Extend the ping program using RoBIOS function RADIOStatus to make it work for ar-

bitrary robot ID numbers.
• Set up an IDE of your preferred programming language and single-step through a robot

program.

3939

3
.

. .
DRIVING ALGORITHMS

ven without any obstacles in its way, driving a robot from point A to
point B can be a challenge. We will first look at an aimless random
drive before we examine several methods on how to drive to a specific

point. Things will get even more complex if we need to arrive at the destina-
tion with a specified orientation.

3.1 Random Drive
The first generation of robot vacuum cleaners used a really simple algorithm in
an endless loop:

• Drive straight until hitting an obstacle.
• Turn a random angle.

If you are worried about the cleaning quality of such a behavior, you might
be right. But from a mathematical point of view, if given infinite time, this
algorithm will cover the complete cleaning area, as long as the robot can phys-
ically reach it.

As you can see from Evan Ackerman’s long-exposure time photos of clean-
ing robots with an LED attached (Figure 3.1), there is a lot of unproductive
zigzagging going on [Ackerman 2010]1 and [Ackerman 2016]2.

More advanced cleaning robots can drive a much more efficient pattern as
shown in Figure 3.2. The robot orientates itself along the major room walls and
then drives a regular lawn mower pattern.

The program for a random drive (Program 3.1) basically consists of a single
while-loop that runs until the END-button (KEY4) has been pressed. We wait
100ms (0.1s) in each loop iteration to reduce the compute overhead. An if-
selection checks whether there is enough space (300mm) to all three sides

E

1 E. Ackerman, Robot Roomba 560 vs. Neato XV-11, IEEE Spectrum, June 2010, https://spec-
trum.ieee.org/automaton/robotics/home-robots/irobot-roomba-560-vs-neato-xv11

2 E. Ackerman, Review: Neato BotVac Connected, IEEE Spectrum, May 2016, https://spec-
trum.ieee.org/automaton/robotics/home-robots/review-neato-botvac-connected

© Springer Nature Switzerland AG 2023

T. Bräunl, Mobile Robot Programming, https://doi.org/10.1007/978-3-031-32797-1_3

https://spec-trum.ieee.org/automaton/robotics/home-robots/irobot-roomba-560-vs-neato-xv11
https://spec-trum.ieee.org/automaton/robotics/home-robots/irobot-roomba-560-vs-neato-xv11
https://spec-trum.ieee.org/automaton/robotics/home-robots/review-neato-botvac-connected
https://spec-trum.ieee.org/automaton/robotics/home-robots/review-neato-botvac-connected
https://doi.org/10.1007/978-3-031-32797-1_3
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32797-1_3&domain=pdf

Driving Algorithms

40

3

Figure 3.1: Roomba 880 cleaning pattern [Ackerman 2016]
Photo courtesy of Evan Ackerman / IEEE Spectrum 2016

Figure 3.2: Roomba 980 cleaning pattern [Ackerman 2016]
Photo courtesy of Evan Ackerman / IEEE Spectrum 2016

Random Drive

41

before continuing to drive forward. If not, the robot backs up a short distance
(25mm) and then turns a random angle. Function random() produces a number
between 0 and 1, so the term

180 * (random() - 0.5)

produces a value between –90 and +90, which defines the possible range of
our random turns. In the next loop iteration, the robot will drive straight again,
provided there is enough space along its new direction.

Program 3.2 uses an extended version of the same algorithm. It prints the
numerical values of the PSD sensors onto the display, which requires them to
be stored in variables f, l, and r. It also prints a message of the robot’s action
(always a good idea) whenever it turns, and it continuously reads a camera
image and displays it as well. The screenshot in Figure 3.3 shows the robot
driving after a couple of straight legs. We used the robot soccer playing field
as a background for this task.

The C version of this program closely resembles the Python implementa-
tion; it just uses the different syntax. The driving result is exactly the same –
see Program 3.3. The camera is initialised as QVGA and its images are dis-
played along with the PSD readings for front, left and right. A press of KEY4
(END soft key) is required to terminate the program.

As the robot will stop for an obstacle of any kind, it will also stop when it
encounters another robot. So we can now safely let several robots run in the
same programming environment. To do this, we only have to add one extra
line for each robot into the SIM script. In the script in Program 3.4, we are
starting three different robots – two LabBots and one SoccerBot S4. All of the
robots in this example have the same executable program, but you can easily
specify different programs by changing the executable filename.

Program 3.1: Random drive program in Python

1 from eye import *
2 from random import *
3
4 safe=300
5 LCDMenu("","","","END")
6
7 while(KEYRead() != KEY4):
8 OSWait(100)
9 if(PSDGet(PSD_FRONT)>safe and PSDGet(PSD_LEFT)>safe

10 and PSDGet(PSD_RIGHT)r>safe):
11 VWStraight(100,200)
12 else:
13 VWStraight(-25,50)
14 VWWait()
15 dir=int(180*(random()-0.5))
16 VWTurn(dir,45)
17 VWWait()

Driving Algorithms

42

3

Figure 3.3: Robot executing random drive program

Program 3.2: Random drive with distance sensor output in Python

1 from eye import *
2 from random import *
3
4 safe=300
5 LCDMenu("","","","END")
6 CAMInit(QVGA)
7
8 while(KEYRead() != KEY4):
9 OSWait(100)

10 img = CAMGet()
11 LCDImage(img)
12 f=PSDGet(PSD_FRONT)
13 l=PSDGet(PSD_LEFT)
14 r=PSDGet(PSD_RIGHT)
15 LCDSetPrintf(18,0,"PSD L%3d",l,f,r)
16
17 if(l>safe and f>safe and r>safe):
18 VWStraight(100,200)
19 else:
20 VWStraight(-25,50)
21 VWWait()
22 dir = int(180*(random()-0.5))
23 LCDSetPrintf(19,0,"Turn %d",dir)
24 VWTurn(dir,45)
25 VWWait()
26 LCDSetPrintf(19,0," ")

Random Drive

43

Adding one extra line per robot is easy, but even this can get tedious if you
want to have, let’s say, 100 robots for a swarm application. For these applica-
tions, there are generic methods for the SIM script available, which we will
talk about in Chapter 5 on robot swarms. The three random drive robots are
shown at various stages of their journey in Figure 3.4.

Program 3.3: Random drive program in C

1 #include "eyebot.h"
2 #define SAFE 300
3
4 int main ()
5 { BYTE img[QVGA_SIZE];
6 int dir, l, f, r;
7
8 LCDMenu("", "", "", "END");
9 CAMInit(QVGA);

10
11 while(KEYRead() != KEY4)
12 { CAMGet(img); // demo
13 LCDImage(img); // only
14 l = PSDGet(PSD_LEFT);
15 f = PSDGet(PSD_FRONT);
16 r = PSDGet(PSD_RIGHT);
17 LCDSetPrintf(18,0, "PSD L%3d F%3d R%3d", l, f, r);
18 if (l>SAFE && f>SAFE && r>SAFE)
19 VWStraight(100, 200); // start driving 100mm dist.
20 else
21 { VWStraight(-25, 50); VWWait(); // back up
22 dir = 180 * ((float)rand()/RAND_MAX-0.5);
23 LCDSetPrintf(19,0, "Turn %d", dir);
24 VWTurn(dir, 45); VWWait(); // turn [-90, +90]
25 LCDSetPrintf(19,0, " ");
26 }
27 OSWait(100);
28 } // while
29 return 0;
30 }

Program 3.4: SIM script file for multiple robots in the same environment

1 # Environment
2 world $HOME/worlds/small/Soccer1998.wld
3
4 settings VIS TRACE
5
6 # robotname x y phi
7 LabBot 400 400 0 randomdrive.py
8 S4 700 700 45 randomdrive.py
9 LabBot 1000 1000 90 randomdrive.py

Driving Algorithms

44

3

3.2 Driving to a Target Position
The opposite of random drive is driving towards a target or goal. We will now
introduce a number of different methods that let us drive from A to B, assum-
ing there are no obstacles between these points. Later in Chapter 10, we will
look at the more complex scenarios that include obstacles which need to be
avoided.

Figure 3.5 shows a number of possible methods for how to get from point A
(robot position in the top left) to point B (red dot at bottom right).

Figure 3.4: Three robots executing random drives in a shared environment

Figure 3.5: Driving methods straight, circle, dog curve and spline

Turn and Drive Straight

45

We can:
• turn on the spot until we have the correct heading, then drive straight

towards the goal (dark green line),
• drive along the arc of the circle that links A to B (blue line),
• constantly incrementally change the robot’s heading to home in on the

target (“dog curve”, light green line),
• drive along a calculated cubic spline curve that also allows us to spec-

ify the desired robot orientation when arriving at the goal (red line).
We will now look at each of these methods in more detail.

3.3 Turn and Drive Straight
Rotating on the spot followed by a straight-line drive is probably the simplest
method for getting from A to B. Although the robot drives the shortest dis-
tance, it is probably not completing the task in the shortest possible time, as it
executes two separate motions and has to come to a full stop after completing
the turn before it can start driving straight.

Program 3.5 shows the algorithm. First, we calculate the angle relative to
the goal by using the function atan2. Unlike atan which takes the quotient dy/
dx as a single argument, function atan2 takes the values dy and dx as two sepa-
rate parameters and can therefore calculate the correct unique angle

goal_angle = atan2(dy, dx) .
As the function returns a result in unit rad, we have to transfer it into

degrees before we can use it for the VWTurn function.
For calculating the driving distance we use the Pythagorean formula

goal_distance = √(dx2+dy2) .

Program 3.5: Rotate and drive straight in C

1 #include "eyebot.h"
2 #define DX 500
3 #define DY 500
4
5 int main()
6 { float angle, dist;
7 // calculate angle and distance angle = atan2(DY,DX);
8 angle = atan2(DY, DX) * 180/M_PI;
9 dist = sqrt(DX*DX + DY*DY);

10
11 // rotate and drive straight
12 VWTurn(angle, 50); VWWait();
13 VWStraight(dist, 100); VWWait();
14 }

Driving Algorithms

46

3
The actual driving commands then become very simple. We use VWTurn

with the calculated angle followed by VWStraight with the calculated distance
value. Note that both drive commands have to be followed by a call to function
VWWait, which halts the main program execution until the drive command has
finished.

Figure 3.6 shows the result of the turn-and-straight method with a marker
placed at the desired goal location. The simulated robot does not hit the marker
exactly because of its slightly inaccurate turning operation, which is similar to
the behavior of a real robot. This problem could best be solved by using sensor
input, such as vision or Lidar, to continually update the relative target position
(compare with Figure 11.10 in Chapter 11 on robot vision).

3.4 Circle
Instead of rotating and then driving straight, we can calculate the required arc
distance s and angle α from the distance between points A and B, in combina-
tion with the angular difference between line AB and the robot’s initial head-
ing. We can then issue a single driving command with a constant curvature,
forming a circle arc.

Figure 3.6: Driving to a target position using the turn-and-straight method

Figure 3.7: Driving arc calculation

Circle

47

As before, we use the function atan2 to calculate the goal direction and the
Pythagorean formula for the direct goal distance d. The total rotation angle α is
given by the goal direction minus the robot’s initial heading phi. As is shown
in Figure 3.7, we can form a right-angled triangle using half of the line d and
half of the angle α. Applying the sine formula for α/2 gives us

sin(α/2) = (d/2) / r .
Solving for radius r results in

r = d / (2*sin(α/2))
and then we can calculate the desired arc length s as

s = r * α .

We now implement all these formulas in Program 3.6. Using the function
VWSetSpeed we need to calculate a fixed angular speed ω that is matching the
selected constant speed v. We do this by dividing the total turn angle α by the
driving time, which in turn is the distance s divided by the linear speed v.

We only issue a single VWSetSpeed drive command and then check the goal
distance in a loop. When the robot is close enough we stop it.

Although correct in principle, this approach does not give good driving
results, as the turn function in both simulated and real robots is not perfect (as

Program 3.6: Driving a circle using VWSetSpeed in C

1 #include "eyebot.h"
2 #define GOALX 1000
3 #define GOALY 500
4 #define SPEED 300
5
6 int main()
7 { float goal_angle, alpha, d, r, s, omega;
8 int x,y,phi, dx,dy;
9

10 goal_angle = atan2(GOALY, GOALX); // unit is [rad]
11 VWGetPosition(&x,&y,&phi); // angle in [deg]
12 alpha = goal_angle - phi*M_PI/180;// relative to rob.
13
14 d = sqrt(GOALX*GOALX + GOALY*GOALY);// segment length
15 r = d / (2*sin(alpha/2)); // radius
16 s = r * alpha; // arc length
17
18 omega = (alpha * 180/M_PI) / (s/SPEED); // angle/time
19 VWSetSpeed(SPEED, round(omega));
20
21 do
22 { OSWait(100);
23 VWGetPosition(&x,&y,&phi);
24 dx = GOALX-x; dy = GOALY-y;
25 } while (sqrt(dx*dx + dy*dy) > 100);
26 VWSetSpeed(0, 0); // stop robot
27 }

Driving Algorithms

48

3
well as based on integers instead of floating point numbers). A better perform-
ing and much simpler solution is the built-in function VWDrive that directly
implements the desired driving function along a circle. Program 3.7 lists the
simple two-line code and Figure 3.8 shows the execution screenshot.

3.5 Dog Curve
If a robot maintains a constant speed and initially drives straight from its start-
ing orientation, but then in every step corrects its angle towards the goal, we
end up with a continuous movement where the curvature changes in every sin-
gle iteration step. The resulting path is often called a dog curve, suggesting that
dogs follow this principle when chasing a target. The algorithm is still quite
simple and is shown in Program 3.8.

As before, the goal coordinates are given as a relative offset to the robot’s
current position (GOALX, GOALY). In a do-while loop we calculate the robot’s
current offset to the goal in (dx, dy) and then use these values to calculate the
distance and angle towards the goal position. The difference between the goal
angle and the robot’s current heading angle is used in a very simple way for
determining the required angular speed ω of the robot:

• If the difference is greater than the threshold of 5° then increment ω.
• If the difference is less than the threshold of –5° then decrement ω.
• Otherwise set ω to 0.

With these values, VWSetSpeed can be called with a constant linear speed v
and the calculated angular speed ω. The loop continues while the robot is more

Program 3.7: Driving a circle using VWDrive in C

1 int main()
2 { VWDrive(GOALX, GOALY, SPEED);
3 VWWait();
4 }

Figure 3.8: Driving along the arc of a circle

Splines

49

than 100mm away from the goal position, then a stop command is issued and
the program terminates. Figure 3.9 shows the resulting dog curve.

3.6 Splines
Cubic splines are a more complex method for driving from A to B, but they
offer a feature that none of the previous methods can. Splines allow us to spec-
ify the orientation in the target point B, so the robot will arrive at the specified
point with the specified heading. This is quite important for a number of appli-
cations; for example, in robot soccer we want the robot to drive to the ball, but
it should approach it from an angle where it can kick the ball towards the oppo-
nent’s goal.

Program 3.8: Driving a dog curve in C

1 #include "eyebot.h"
2 #define GOALX 1000
3 #define GOALY 500
4
5 int main()
6 { float diff_angle, goal_angle, goal_dist;
7 int steer=0, x,y,phi, dx,dy;
8
9 do

10 { VWGetPosition(&x,&y,&phi);
11 dx = GOALX-x; dy = GOALY-y;
12 goal_dist = sqrt(dx*dx + dy*dy);
13 goal_angle = atan2(dy, dx) * 180/M_PI;
14 diff_angle = goal_angle - phi;
15 if (diff_angle > 5) steer++;
16 else if (diff_angle < -5) steer--;
17 else steer = 0;
18 VWSetSpeed(100, steer/2);
19 OSWait(100);
20 } while (goal_dist > 100);
21 VWSetSpeed(0, 0); // stop robot
22 }

Figure 3.9: Driving along a dog curve

Driving Algorithms

50

3
Hermite splines use a parameter u that runs from 0 to 1 over the length of

the path to be driven. It uses four blending functions H1 to H4 with definitions
as follows [Wikipedia 2019]3

H1(u) = 2u3 –3u2 +1
H2(u) = –2u3 +3u2

H3(u) = u3 –2u2 +u
H4(u) = u3 –u2

The graphical representation of the blending functions is displayed in Fig-
ure 3.10. As can be seen, H1 gradually decreases from one down to zero, while
H2 does the opposite. H3 and H4 both start and finish at zero with lower values
in opposite directions.

For the start point a with local pose4 [0,0, 0] and the goal point b with pose
[x,y, α] we set the path length to the direct Euclidean distance multiplied by a
scaling factor k

len = k * √(x2+y2) .
With this, we can initialize start and end points (ax, ay and bx, by) as well as

their scaled tangent vectors (Dax, Day and Dbx, Dby). For any point p and
angle α, the scaled tangent vector will be

Dpx = len * cos(α) and
Dpy = len * sin(α) .

However, since the local orientation for the robot’s starting position a is
always 0° (and cos(0)=1 and sin(0)=0), the start tangent vector becomes sim-
ply (len, 0).

start: ax = 0, ay= 0 Dax = len, Day = 0
goal: bx = x, by = y Dbx = len*cos(α), Dby = len*sin(α)

3 Wikipedia, Cubic Hermite spline, 2019, en.wikipedia.org/wiki/Cubic_Hermite_spline

Figure 3.10: Hermite spline blending functions

4 A pose combines position and orientation of an object. The pose of a robot moving in 2D
space is the translation in x and y, and a single rotation angle α.

Splines

51

Next, we iterate the formula with parameter u in the range [0, 1] to receive
all intermediate points s(u) of the spline curve.

sx(u) = H1(u)*ax + H2(u)*bx + H3(u)*Dax + H4(u)*Dbx
sy(u) = H1(u)*ay + H2(u)*by + H3(u)*Day + H4(u)*Dby

We can then plot the generated points with a spreadsheet application in Fig-
ure 3.11. The higher the scaling factor k, the further the spline curve deviates
from the straight line between a and b.

The implementation of the intermediate spline point generation follows
directly from the definitions made above. Program 3.9 shows the coding in C.

Driving along the generated points is another problem altogether. We steer
the robot using the difference between the robot’s current heading, read from
its localization function VWGetPosition, and the desired heading, derived from
the line between the previous and the current spline point. Driving the robot
can then be done piecewise using VWCurve using short distances between
intermediate spline points (see Program 3.10).

Figure 3.11: Spline points for destinations [100,100, 0°] with scaling factor 1.5
(left) and [100, 100, 180°] with scaling factor 2 (right)

Program 3.9: Spline point generation in C

1 for (float u = 0.0; u <= 1.0; u += INTERVAL) // [0..1]
2 { u2 = u*u; u3 = u2*u;
3
4 h1 = 2*u3 - 3*u2 + 1;
5 h2 = -2*u3 + 3*u2;
6 h3 = u3 - 2*u2 + u;
7 h4 = u3 - u2;
8
9 sx = ax*h1 + bx*h2 + Dax*h3 + Dbx*h4;

10 sy = ay*h1 + by*h2 + Day*h3 + Dby*h4;
11 }

Driving Algorithms

52

3

Figure 3.12 shows the final drive along a spline curve for destination pose
[1450, 650, 0°].

3.7 Tasks

Program 3.10: Spline driving function in C

1 sphi = round(atan2(sy-lasty, sx-lastx) * 180.0/M_PI);
2 VWGetPosition(&rx,&ry,&rphi);
3 VWCurve(DIST, sphi-rphi, SPEED);
4 VWWait();
5 lastx=sx; lasty=sy;

Figure 3.12: Driving along a spline curve

• Write a SIM script to start three different robot programs. Robot-1 should go left–right
from one goal to the other and back, robot-2 should drive up and down the middle line
and robot-3 should do a random drive, starting in the top-left corner.
All robots should stop and back up on encountering an obstacle or another robot.

• Change the SIM script so that all three robots run the same executable file. Combine
the three source programs into one and let a call to function OSMachineID decide
which part each robot should execute.

• Complete the spline driving program and make it flexible by accepting command line
parameters for any destination pose [x, y, α].

• Improve all A-to-B driving routines in this chapter by replacing fixed coordinates with
sensor-based object detection functions in every step of the iteration.

5353

4
.

. .
LIDAR SENSORS

idar stands for “light detection and ranging”. A Lidar sensor has one or
more rotating laser beams and can generate several thousand distance
points per revolution in a fraction of a second. Typical automotive

Lidar sensors have 8, 16 or 32 separate beams that allow a much better inter-
pretation of the 3D environment.

Distance data from a Lidar sensor is much simpler to process than from a
camera, as it directly provides distance information, whereas image data
requires complex computations from stereo or motion sequences in order to
extract distances. Lidar sensors are installed on most autonomous research
vehicles, including the most successful driverless cars to date – the Waymo
fleet (formerly Google X). Unfortunately, Lidar sensors are very expensive.
Even a single-beam Lidar for robotics applications costs several thousand dol-
lars, while a multi-beam automotive Lidar can cost up to $100,000.

High-quality Lidar sensors measure the time of flight for each reflected
beam and calculate the spatial distance accordingly. As these beams travel
with the speed of light, this requires high-performance timing circuits – this
explains the high sensor cost. Lidar sensors for measuring only a single point
often use a simpler refraction displacement technology. These are cheaper to
implement and are often used for electronic distance measurement devices in
the building industry.

4.1 Lidar Scans
We are placing a robot in a square driving environment that has one inward-
facing corner. By default for this S4 robot type, the Lidar scans a full 360° cir-
cle clockwise, starting from and ending at the back of the robot. Figure 4.1
indicates the sensor rotation, while Figure 4.2 visualizes the sensor range data.
It generates 360 distance values, so it has a resolution of 1°.

The software for generating the Lidar scan is just a single function call to
LIDARGet. In our C application (Program 4.1) we plot the distance values on
the LCD screen. For each of the 360 values, we draw a blue line of correspond-

L

© Springer Nature Switzerland AG 2023

T. Bräunl, Mobile Robot Programming, https://doi.org/10.1007/978-3-031-32797-1_4

https://doi.org/10.1007/978-3-031-32797-1_4
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32797-1_4&domain=pdf

Lidar Sensors

54

4

ing length (scaled down by factor 10) from left to right on the screen, so from
x-position 0 to 359. The y-position 250 is at the bottom of the drawing area,
leaving some space for printing text plus the input button row.

To further improve readability of the diagram, we can also add fixed lines
for 90°, 180° and 270° in different colors to the diagram (Program 4.2). How-
ever, we label them relative to the robot’s forward position as –90°, 0° and
+90° instead. This extra code gets inserted at the end of the while-loop.

Figure 4.1: Lidar scan range and angles in relation to robot orientation

Program 4.1: Lidar scan and display in C

1 #include "eyebot.h"
2
3 int main ()
4 { int i, scan[360];
5
6 do
7 { LCDClear();
8 LCDMenu("SCAN", "", "", "END");
9 LIDARGet(scan);

10 for (i=0; i<360; i++)
11 LCDLine(i,250-scan[i]/10, i,250, BLUE);
12 } while (KEYGet() != KEY4);
13 }

Program 4.2: Displaying auxiliary lines and text for Lidar output in C

1 LCDLine(180,0, 180,250, RED); // straight (0°)
2 LCDLine(90,0, 90,250, GREEN); // left (-90°)
3 LCDLine(270,0, 270,250, GREEN); // right (+90°)
4 LCDSetPrintf(19,0," -90 0 +90");

Lidar Scans

55

In the LCD plot in Figure 4.3, we can now detect the five outward corners
as the five local peaks in the diagram at roughly –120°, –30°, +10°, +70° and
+110°. The inward facing corner is the sharp local minimum at roughly +30°.

A similar output can be achieved in Python by Program 4.3. Note that
Python loops need to check the condition at the beginning.

Figure 4.2: Lidar scan visualization

Figure 4.3: Lidar scan plotted on robot’s LCD

Lidar Sensors

56

4

4.2 Corners and Obstacles
This section shows a few more Lidar examples. First, in Figure 4.4, there is a
robot in the center of a simple square. The Lidar scan shows four uniformly
high and evenly distributed peaks – one for each corner.

Next, in Figure 4.5, we place the robot into the bottom left corner of the
same environment. We still get four local peaks, one for each corner, but here
they have different distances (different heights in the diagram), and they are no
longer equidistant (left–right) in the diagram as they occur at different angles
than before.

If we bring the robot back to the middle of the square and then place a soda
can to each side, we will get the scan diagram shown in Figure 4.6. The cans
block any information that is radially behind them, which can be clearly seen
in the Lidar visualization in Figure 4.6, left. In the Lidar plot on the LCD
(Figure 4.6, right), the cans appear as two clearly recognizable cut-outs.

Program 4.3: Lidar scan and display in Python

1 from eye import *
2
3 LCDMenu("SCAN", "", "", "END")
4 while KEYGet() != KEY4:
5 LCDClear()
6 LCDMenu("SCAN", "", "", "END")
7 scan = LIDARGet()
8 for i in range(90,270):
9 LCDLine(i,250-int(scan[i]/10), i,250, BLUE)

Figure 4.4: Robot placement and Lidar plot for center position

Tasks

57

4.3 Tasks

Figure 4.5: Robot placement and Lidar plot for corner position

Figure 4.6: Robot visualization with two obstacles and Lidar plot

• Design a simple driving environment world file and store its geometric model on the
robot.

• Write a Lidar program that matches the Lidar image with the stored environment image
and highlights all possible robot positions (and orientations).

• Let the robot drive around (e.g. wall following or random drive) and from the new Li-
dar data coming in, eliminate more and more possible positions/orientations until the
one correct position/orientation remains.

5959

5
.

. .
ROBOT SWARMS

n the previous chapters we showed how multiple robots can run in the
same environment with the same or a different control program. If the
number of robots gets very large, specifying them with one line each in

the SIM script can get lengthy. We therefore introduce a swarm notation that
works by using single character placeholders in a maze-format environment
file, together with a matching SIM script.

5.1 Setting up a Swarm
We start with the maze environment file. The example in Figure 5.1 has 16
placeholders marked by character a arranged in a 4×4 grid.

In the SIM script in Program 5.1, we use this environment file and specify
the use of robot type S4 for each of the a placeholders. No (x,y)-position place-
ment is necessary here, as the positions are already given in the environment
file. If we do not specify an initial orientation either, all robot orientations will
be chosen at random. And, as specified by the last parameter, all robots exe-

I

Figure 5.1: Maze environment file for 16 identical robots

| |
| a a a a |
| |
| a a a a |
| |
| a a a a |
| |
| a a a a |
|_______________________|

© Springer Nature Switzerland AG 2023

T. Bräunl, Mobile Robot Programming, https://doi.org/10.1007/978-3-031-32797-1_5

https://doi.org/10.1007/978-3-031-32797-1_5
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32797-1_5&domain=pdf

Robot Swarms

60

5
cute the same program simple.x. Figure 5.2 shows the resulting placement of
the 16 identical robots

In the next example (world file in Figure 5.3), we want to use different
types of robots, so in the maze environment file we use four different place-
holders: a, b, c and d.

In the matching SIM script in Program 5.2, we first use the “robot” con-
struct to load four new, non-standard robots into the environment. After that,

Program 5.1: Repetitive environment SIM script

1 # Environment
2 world bots16.maz
3
4 # robotname x y phi
5 S4 a simple.x

Figure 5.2: Simulation result of 16 identical robots

Figure 5.3: Maze environment file for 16 robots of four types

| |
| a b c d |
| |
| b c d a |
| |
| c d a b |
| |
| d a b c |
|_______________________|

Setting up a Swarm

61

we can use their names in the same way as predefined types. So all a place-
holders become Cubot, all b placeholders Cubot-r and so on. No orientations
are given, so the robots will have a random starting orientation. As before, they
all share the same executable program. Figure 5.4 shows the result in EyeSim.

If we want to set up robots with a fixed orientation, we can use the SIM
script in Program 5.3. It places several S4 and LabBot robots in the same envi-
ronment. All S4 robots (placeholder l) are facing left (orientation 180°), and all
LabBot robots (placeholder r) are facing right (orientation 0°).

The total number and the individual positions of the robots are determined
by the environment file (world format in Figure 5.5). In this case, as you can

Program 5.2: Environment file for four groups of robots

1 # Environment
2 world bots4x4.maz
3
4 # robot definitions
5 robot ../../robots/Differential/Cubot.robi
6 robot ../../robots/Differential/Cubot-r.robi
7 robot ../../robots/Differential/Cubot-b.robi
8 robot ../../robots/Differential/Cubot-y.robi
9

10 # robotname placeholder executable
11 Cubot a simple.x
12 Cubot-r b simple.x
13 Cubot-b c simple.x
14 Cubot-y d simple.x

Figure 5.4: Simulation result of 16 robots of four different types

Robot Swarms

62

5

see, we have placed S4s and LabBots against each other in a friendly match of
five-a-side soccer. The symbol “o” in the middle will be converted to a golf
ball, which has the right size for this small-size league robot soccer event. Fig-
ure 5.6 shows the resulting scene in EyeSim.

5.2 Follow Me
A typical swarm application is to follow a leading robot. We let the lead robot
execute its own driving program and then concentrate on the follower robot.
The SIM script in Program 5.4 defines a LabBot as the leader and an S4 Soc-
cerBot as a follower. For the leader, a one-line program for setting the curve
speed is all we need (Program 5.5).

Program 5.3: Environment file for five-a-side robot soccer

1 # Environment
2 world soccer5-5.maz
3
4 # robotname x y phi
5 S4 l 180 swarm.x
6 Labbot r 0 swarm.x

Figure 5.5: Maze environment file for five-a-side soccer

Figure 5.6: Simulation result for five-a-side soccer

 | |
 | |
 | r l |
| r l |
| r o l |
|_ r l _|
 | r l |
 | |
 |_______________________________|

Follow Me

63

We write the follower program in C for a change (Program 5.6). It uses a
Lidar scan instead of the simpler PSD distance sensors to pinpoint the lead
robot’s exact position. The LIDARGet command takes (by default) 360 dis-
tance measurements around the robot, which it places into the supplied array.
Then a simple loop is used to find the angle with the minimum distance, which
is needed for setting the angular speed in the subsequent VWSetSpeed com-
mand. We use 180° minus the scan angle, as our Lidar works clockwise from
the back of the robot, so the array value at position [180] gives the distance
straight ahead.

Finally, the OSWait statement reduces the speed of the update rate to 10Hz.
We need to give the robot a bit of time to execute each drive command before
we overwrite it with the next one.

Program 5.4: Leader and follower SIM script

1 # # Environment
2 world Field.wld
3
4 # robots
5 Labbot 2000 500 0 leader.py
6 S4 500 500 0 follower.x

Program 5.5: Leader program in Python

1 from eye import *
2 VWSetSpeed(300, 15)

Program 5.6: Follower program in C

1 include "eyebot.h"
2
3 int main ()
4 { int i, min_pos, scan[360];
5 while (KEYRead()!=KEY4)
6 { LCDClear();
7 LCDMenu("", "", "", "END");
8 LIDARGet(scan);
9 min_pos = 0;

10 for (i=0; i<360; i++)
11 if (scan[i] < scan[min_pos]) min_pos = i;
12 VWSetSpeed(300, 180-min_pos);
13 OSWait(100); // 0.1 sec
14 }
15 }

Robot Swarms

64

5
The screenshots in Figure 5.7 and Figure 5.8 show the successful chase of

the follower after the leader robot. Further details on swarm and robot interac-
tion can be found in [Wind, Sawodny, Bräunl 2018]1.

1 H. Wind, O. Sawodny, T. Bräunl, Investigation of Formation Control Approaches Consid-
ering the Ability of a Mobile Robot, Intl. Journal of Robotics and Automation, June 2018

Figure 5.7: Leader-follower steps in simulation

Figure 5.8: Leader-follower scenario in its final stage

Multiple Followers

65

5.3 Multiple Followers
Things get more complex if we have multiple robots following the leader. In
this case, we have to think how the followers can identify the leader. This can
be done by various methods, for example:
• radio communication –

if the leader transmits its current position data to all followers,
• color or shape coding –

if the leader has a unique color (or shape) that is visible to all followers, or
• high Lidar beam –

if the leader is higher than all followers and can therefore be detected by an
angled or higher placed Lidar sensor.

We chose the latter implementation as shown in the resulting screenshot in
Figure 5.9.

The Lidar sits above the follower robots’ heights and therefore only detects
the leading robot. Please note that on a real robot, the Lidar would need to be
slightly angled upwards to eliminate interference with the physical sensors of
the other followers. As this would reduce the scanning range to 180° and also
limit the maximum detection range of the leader, we will ignore this for now.

In the SIM script in Program 5.7, we refer to a new robot type LidarBot,
which will have the special Lidar placement discussed before. If we want, we
can later add some obstacles into the swarm path, for example

can 5000 1400 0

The Lidar setting is part of a robot’s ROBI description file, so we have to
define our own robot (LidarBot) for this application. Description file lidar-

Figure 5.9: Lidar positioning above the follower robots

Program 5.7: Environment file for self-defined robot type

1 # # Environment
2 world field.wld
3 settings VIS
4
5 robot lidarbot.robi
6 ...

Robot Swarms

66

5

bot.robi contains, among many other things, the Lidar specification shown in
Program 5.8. Note that the (x,y,z)-displacement is (0, 0, 100), so the Lidar is
placed in the center of the robot but 100mm above it. With this the Lidar clears
its own robot chassis and other S4-style robots, but will detect the higher han-
dle of the leading LabBot. The scanning range has been set to 180 degrees
(centered in front of the robot) and 180 data points, which maintains the 1°
angular resolution.

We also need PSD distance sensors to avoid collisions with other robots.
For this, we define four new PSDs, which point to 25° as well as 45° diago-
nally to the front-left and front-right (see Program 5.9 and Figure 5.10).

In the application program, we let the leader just drive straight – again in
Python (Program 5.10). We then place five followers behind the leader robot
in the SIM script (Program 5.11).

Program 5.8: Lidar declaration in robot definition file

1 # lidar pos relative to robot centre
2 # x y z [mm], rotation x y z [°]
3 # angular range [1, 360], tilt angle [-90, +90], data pts
4 lidar 0 0 100 0 0 0 180 10 180

Program 5.9: PSD declarations in robot definition file

1 # "psd" id, name, pos. to rob-center (right,front,up) [mm]
2 # R,U,F axis rotations in deg [clockwise is positive]
3 psd 1 PSD_FRONT 0 60 30 0 0 0
4 psd 2 PSD_LEFT 45 60 30 0 0 -90
5 psd 3 PSD_RIGHT -45 60 30 0 0 90
6 psd 4 PSD_BACK 0 -60 30 0 0 -180
7 psd 5 PSD_FL 0 60 30 0 0 -45
8 psd 6 PSD_FR 0 60 30 0 0 45
9 psd 7 PSD_FFL 0 60 30 0 0 -25

10 psd 8 PSD_FFR 0 60 30 0 0 25

Figure 5.10: Additional PSD sensors for collision avoidance

Multiple Followers

67

The followers’ main program in Program 5.12 runs a while-loop where it
first scans the 180° area in front of the robot using the function LIDARGet. It
then looks for the minimum value, which will be in the direction of the leader
robot’s high handle. Variable min_pos will then show us the direction of the
leader in the range [–90°, +90°]. We also plot the Lidar image onto the screen
using LCDLine, similar to the single follower scenario before.

In the second half of the while-loop, we need to check for collisions with
other followers, the leader robot or the wall at the end. We could have done
this with a second, lower placed or angled Lidar beam, but we decided to use
the PSD sensors instead. As discussed before, we added four more PSDs to the

Program 5.10: Rotating on the spot in Python

1 from eye import *
2 VWSetSpeed(300,0)

Program 5.11: Single leader with five followers SIM script

1 # robots
2 Labbot 2500 1200 0 leader-straight.py
3 LIDARBOT 1500 1500 0 follower.x
4 LIDARBOT 1500 1200 0 follower.x
5 LIDARBOT 1500 900 0 follower.x
6 LIDARBOT 500 1400 0 follower.x
7 LIDARBOT 500 1000 0 follower.x

Program 5.12: Swarm algorithm for multiple followers in C

1 while (KEYRead()!=KEY4)
2 { LCDClear();
3 LIDARGet(scan);
4 min_pos = 0;
5 for (i=0; i<SCANSIZE; i++)
6 { if (scan[i] < scan[min_pos]) min_pos = i;
7 LCDLine(i,250-scan[i]/100, i,250, BLUE);
8 }
9 F =PSDGet(PSD_FRONT);

10 L =PSDGet(PSD_LEFT); R =PSDGet(PSD_RIGHT);
11 FL =PSDGet(PSD_FL); FR =PSDGet(PSD_FR);
12 FFL=PSDGet(PSD_FFL); FFR=PSDGet(PSD_FFR);
13 if (F<SAFE) VWSetSpeed(0, -90);
14 else if (L<SAFE || FL<SAFE || FFL<SAFE)
15 VWSetSpeed(150, -20);
16 else if (R<SAFE || FR<SAFE || FFR<SAFE)
17 VWSetSpeed(150, +20);
18 else VWSetSpeed(300, 90 - min_pos);
19 OSWait(200); // 0.2 sec
20 }

Robot Swarms

68

5
standard directions (front, left, right and back) to improve detection and pre-
vention of collisions before they occur (i.e. FL, FFL, FR, FFR at ±45° and
±25°). After reading each sensor value, we can determine the new driving
direction and speed:

• If the robot comes too close to an obstacle, rotate on the spot.
• If there is an obstacle on the left or right side (90°, 45° or 25°),

curve in the opposite direction to avoid it at a reduced speed.
• If all is clear, drive straight towards the leader at full speed.

Figure 5.11: Lidar plot of follower robot

Figure 5.12: Swarm scenario unfolding

Tasks

69

A typical Lidar scan looks like Figure 5.11. We can see a distinctive gap in
the blue block of 180 scanlines that represents the high handlebar of the lead-
ing LabBot, which towers over all the following S4 SoccerBots. This gives us
the goal direction, but of course we have to take the PSD data into account to
avoid a collision with other followers or the leader.

The screenshots in Figure 5.12 show the motion development of the five
robots following their leader. The blue wall to the right side of the driving area
prevents the robots from falling off the (virtual) table.

At the end (Figure 5.13), after the leader has been stopped in front of the
wall, the follower robots will go off in uncontrolled patterns to avoid a colli-
sion while still trying to drive closer.

5.4 Tasks

Figure 5.13: Follower robots entangled at the protection wall

• Extend the follower program to drive at a faster speed than the leader. Use Lidar and/
or PSDs to keep a safe distance from it and prevent a collision. Try different driving
patterns for the leader robot and see whether the follower can catch it.

• Add obstacles in the driving path and let the leader avoid them. The followers have to
avoid all obstacles but still continue their pursuit.

• Use an angled Lidar placement at the top of each follower robot.

7171

6
.

. .
WALL FOLLOWING

all following is a good building block for many robotics tasks. It
concerns not just the ability of a robot to avoid a collision, but
also its detection of the surrounding environment and orientation

within it. For this exercise, we use the robot’s three PSD sensors, which give
distance measurements to the front, left and right. The Lidar sensor with hun-
dreds of distance values may be beneficial for this application too, but it is not
essential. Considering the high cost of a Lidar, we want to solve this task just
using the infrared PSD sensors.

6.1 Wall Following Algorithm
As this algorithm gets a bit more complex, we begin by looking how the wall
following algorithm should be executed. As a start, we assume a more or less
rectangular driving area with straight walls and right angle corners.

1. The robot starts in the middle of the field with random orientation to the
walls. Not knowing what its orientation towards the environment is, it
first drives straight until it encounters a wall and then stops.

2. The robot now has to turn itself parallel to the wall, leaving it to its left
side.

The following two steps are then repeated:
3. The robot continues driving, “hugging” the wall, by continuously updat-

ing its driving curve with the help of the left PSD sensor.
4. When the robot encounters the first corner (detected by the front PSD sen-

sor), it performs a 90° turn.

A perfect run would therefore look like the one in Figure 6.1. Of course, to
execute each of these steps properly is far from trivial. Let us go through them
one by one.

W

© Springer Nature Switzerland AG 2023

T. Bräunl, Mobile Robot Programming, https://doi.org/10.1007/978-3-031-32797-1_6

https://doi.org/10.1007/978-3-031-32797-1_6
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32797-1_6&domain=pdf

Wall Following

72

6

Step 1: Driving straight can easily be established by the function VWSet-
Speed(x,0) that specifies a linear speed of x and zero rotational speed.
Stopping only requires the reading of the front PSD sensor, so imple-
menting this part is simple.

Step 2: Calculating the correct robot orientation relative to the wall is the key
for this step. The subsequent rotation can be easily executed with the
functions VWTurn and VWWait.

As can be seen from the diagrams in Figure 6.2, distance readings from
the front and right PSD (left diagram) or the front and left PSD (right
diagram) – depending on the approach angle – can be used for deter-
mining the rotation angle. As the front and right PSD (or the front and
left PSD) are positioned 90° apart, we can use the inverse tangent func-

Figure 6.1: Wall following, perfect run

Figure 6.2: Determining the wall angle

Where L>R
α = atan2(R,F)

Where L<R
α = atan2(L,F)

Wall Following Algorithm

73

tion to calculate the wall angle α. In software, we will use the atan2
mathematics function, which takes two arguments (∆y and ∆x) instead
of the quotient, to make the result angle unique for all input values.

You may have already realized that this rule works in most circum-
stances but unfortunately not in all. What if the robot is exactly in the
middle between two walls, so L=R? Or much worse, what if the robot
is so close to a corner that L and F measure distances to two different
walls? More work will be required.

Step 3: Driving straight along a wall until the next corner sounds very similar
to step 1, although it is not. This would only be the case if step 2 had
aligned the robot perfectly with the wall, the wall is exactly straight
and the robot is driving perfectly straight – none of which actually oc-
curs in the real world, as there are always some imperfections and
noise.

What we need to do instead, is to continuously monitor the robot’s
distance to the wall, using its left PSD sensor reading to correct the
curvature that the robot is driving. Note, however, that the PSD value
L may be larger than the robot’s actual wall distance d if the robot is
not perpendicular to the wall (see Figure 6.3).

Subsequent measurements of L while driving can be used to deter-
mine the robot’s angle to the wall and the correct wall distance. This
can then be used to correct the robot’s driving angle for wall following.

The front PSD can be used as in step 1 to detect the next corner.
However, this only works if the robot is not too much out of wall align-
ment so that the front sensor does not intersect with the wall that is be-
ing followed.

Step 4: Turning a fixed 90° angle could be done with VWTurn, but we want to
be a bit more flexible, as the corner may not be exactly 90° and the ro-
bot might not be perfectly aligned with it either. Instead, we suggest
that the robot is rotated until there is sufficient clearance (a constant
value) in front of PSD_FRONT.

Again, this method will work in most cases, but it may not succeed
if there are additional obstacles or other robots present. More work is
needed here as well.

Figure 6.3: Actual wall distance d versus measured distance L

Wall Following

74

6

6.2 Simplified Wall Following Program
We will now present a simplified program that solves the wall following prob-
lem in a simple environment but is far from perfect. Its main program is an
endless loop that repeats the two steps drive and turn, one after the other (Pro-
gram 6.1).

So, this means we are using the same “drive straight” function for steps 1
and 3 and the same “turn” function for steps 2 and 4.

The function drive does in fact do the wall following. If the PSD_LEFT
value gets too low, the robot drives a slight right curve (curvature –3), other-
wise it drives a slight left curve (+3). So in fact, the robot never drives per-
fectly straight. An OSWait function inside the loop limits the update speed and
gives each direction change a little bit of time to have an impact before the
next measurement is done. The PSD_FRONT measurement is used to termi-
nate the wall-follow routine. This function does not attempt to calculate the
robot’s real distance from the wall. The result will be a slightly curved wall-
follow path.

Using this subroutine for the initial straight drive to the first wall is just to
save some lines of code. As can be seen in the drive plot in Figure 6.4, the ini-
tial drive leg to the wall is slightly curved, but this does not really matter.

The turn function is even simpler. The robot turns using VWSetSpeed until
there is sufficient space in front, which we define as twice the space there is to

Program 6.1: Minimal wall following in C

1 #include "eyebot.h"
2 #define SAFE 250
3
4 void drive()
5 { do { if (PSDGet(PSD_LEFT)<SAFE) VWSetSpeed(200, -3);
6 else VWSetSpeed(200, +3); // turn right or left
7 OSWait(50);
8 } while (PSDGet(PSD_FRONT) > SAFE); // next corner
9 }

10
11 void turn()
12 { VWSetSpeed(0, -100);
13 while (PSDGet(PSD_FRONT) < 2*PSDGet(PSD_LEFT))
14 OSWait(50);
15 }

16
17 int main()
18 { while(1)
19 { drive(); turn(); }
20 }

Simplified Wall Following Program

75

the wall that is being followed (left PSD). Again, calling OSWait will limit the
cycle speed for the busy-wait loop. Note that none of the functions stop the
robot’s motion (e.g. by using VWSetSpeed(0,0)) when they terminate. They
simply assume that the next function will change the robot’s speed to whatever
is required.

Please note that this algorithm is highly dependent on the environment that
the robot drives in and is by no means complete or perfect. It does not behave

Figure 6.4: Stepwise development of wall following

Wall Following

76

6
well under all circumstances and from all starting positions or orientations.
There are a number of improvements that should be made as outlined in the
beginning of this chapter, and this does not even include coping with more
complex shaped walls and odd angles. Still, not a bad performance for a pro-
gram of little more than ten lines of code.

6.3 Tasks

• Rewrite the wall following program to solve wall following properly, as outlined in the
four steps.

• Create a more complex driving environment, with nooks, angles other than 90°, curved
walls, etc. Adapt your program so that it can still do wall following.

• Extend the wall following program to drive a space filling “lawn mower” pattern, like
the more intelligent vacuum robots shown in Section 3.1 on Random Drive.

7777

7ALTERNATIVE DRIVE
.

. .
SYSTEMS

o far, the vehicle type we have worked with uses a differential drive
mechanism. It uses two independently driven wheels and there is no
need for a steering mechanism as rotation can be achieved by driving

one wheel faster than the other. Differential drive is arguably the simplest
mechanical drive arrangement; hence, most mobile robots use this system.
However, in this chapter we introduce car-like steering, omni-directional
wheels and vehicles that can navigate terrain.

7.1 Ackermann Steering
Cars typically have only a single drive motor, whose power is distributed over
two wheels (back or front – or all four in all-wheel drive vehicles) by using a
mechanical differential. This makes it possible to build a powerful drive sys-
tem and avoid slip and tire wear when driving curves. However, as driving can
only be forward or backward, there is a need for an independent steering
mechanism, which will turn both front wheels in the desired driving direction.
This so-called Ackermann steering is used on all cars, which can be rear-wheel
drive, front-wheel drive or all-wheel drive.

Most model cars follow this principle and can therefore be easily modified
for autonomous driving. As has been shown in Chapter 1, we can interface a
model car directly to a Raspberry Pi controller without the need for any addi-
tional hardware and power the controller from a USB power bank. We need
two PWM (pulse width modulation) output signals, one for setting the steering
angle and one for setting the motor speed. As sensors, we have the Raspberry
camera and, if required, a USB Lidar scanner, such as the Hokuyo URG-
04LX-UG01 (Figure 7.1) or the budget sensor Okdo LD06.

The way a model car is physically connected to the controller will deter-
mine which drive commands can be used. If the built-in motor controller is

S

© Springer Nature Switzerland AG 2023

T. Bräunl, Mobile Robot Programming, https://doi.org/10.1007/978-3-031-32797-1_7

https://doi.org/10.1007/978-3-031-32797-1_7
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32797-1_7&domain=pdf

Alternative Drive Systems

78

7

used, the drive system just requires a PWM signal, for which we have the
SERVO-command in RoBIOS. However, if the drive motor is controlled from
the EyeBot interface board, the MOTOR-command is used (we will assume the
latter for now). The steering always requires a PWM signal, which is generated
by a SERVO-command in RoBIOS.

The subroutine in Program 7.1 combines motor drive and steering com-
mands to a combined function call, assuming the drive motor is linked to
motor port 1 and steering is connected to servo output 1 on the EyeBot board.
If two PWM signals are required, they can be linked to servo outputs 1 and 2.
In the RoBIOS library, MOTORDrive accepts values in the range [–100, +100]
for backward or forward driving at variable speeds. Setting the speed to 0 will
stop the motor. SERVOSet accepts single-byte values in the range [0, 255],
with 0 being the servo’s far-left position for steering, 127 being the neutral
middle position (wheels straight) and 255 being the far-right position.

When transforming a model car into a robot without an interface board,
then two of the Raspberry Pi’s I/O lines can be used directly for the drive
motor and steering. In the EyeBot/RoBIOS software we use commands from
the wiringPi library for this [Wiring Pi 2019]1.

We can then use the subroutine in Program 7.1 to simplify driving com-
mands for the main application (Program 7.2). The OSWait statement after

Figure 7.1: Model car with embedded controller, camera and Lidar

Program 7.1: Procedure for drive-and-steer command in C

1 void Mdrive(int drive, int steer)
2 { MOTORDrive(1, drive);
3 SERVOSet (1, steer);
4 }

1 Wiring Pi – GPIO Interface library for the Raspberry Pi, 2019, http://wiringpi.com

http://wiringpi.com

Omni-directional Drives

79

each drive command will let the drive command control the vehicle for a few
seconds until the next command takes over.

The screenshot in Figure 7.2 shows the robot’s drive from a bird’s eye per-
spective (left) as well as the model car configuration from the side (right).
Ackermann drive vehicles can drive curves up to a certain minimum radius but
cannot turn on the spot.

7.2 Omni-directional Drives
Differential drive vehicles can drive forward/backward, drive along curves and
they can turn on the spot – but they cannot drive sideways. Ackermann steer-
ing vehicles cannot even turn on the spot and are quite restricted by their mini-
mum turning curve radius. Therefore, it would be nice to have a vehicle type
that is omni-directional, i.e. one that can drive in any given direction.

There are in fact vehicle types that can accomplish this. Most prominent are
vehicles with so-called Mecanum wheels. These are quite complex mechanical
wheel assemblies, which will effectively rotate the wheel’s force vector on the
driving surface. The interplay of a 3-wheel or 4-wheel Mecanum configuration
with as many independent motors allows driving in any given direction, as
well as turning on the spot.

Program 7.2: Main driving function in C

1 int main ()
2 { Mdrive("Forward", 60, 127); OSWait(4000);
3 Mdrive("Backward", -60, 127); OSWait(4000);
4 Mdrive("Left Curve", 60, 0); OSWait(2000);
5 Mdrive("Right Curve", 60, 255); OSWait(2000);
6 Mdrive("Stop", 0, 0);
7 return 0;
8 }

Figure 7.2: Ackermann driving (left) and side view (right)

Alternative Drive Systems

80

7
The original Mecanum wheel was invented by the Swedish engineer Bengt

Ilon and patented in the U.S. (US3876255, submitted 1972 / granted 1975) and
Germany (DE2354404, 1973/1974). Our Omni-1 robot (Figure 7.3, left) has
been built following this wheel design.

The surface of each wheel is covered by a number of freely rotating barrel-
shaped rollers, which are held by pins from the left and right rim. Only the bar-
rels make contact with the driving surface and they are orientated at +45° to
the driving directions on the front-left and rear-right wheels, and at –45° for
the front-right and rear-left wheels. These mirrored wheels are physically dif-
ferent from each other and cannot be transformed into each other by rotation.

The ingenious idea behind this wheel design is that the rotational force of
the wheel is being split into a force along the rotational axis of the barrel (blue)
and the one perpendicular to it (red), as shown in Figure 7.4. The blue force
will be eliminated through a small movement of the free roller, so only the red
force at ±45° remains.

With four Mecanum wheels mounted on a vehicle, we can now observe its
overall movement as in Figure 7.5.

Figure 7.3: Robots Omni-1 (left) and Omni-2 (right)

Figure 7.4: Forces on front-left and front-right Mecanum wheels

Front left Front right

Omni-directional Drives

81

1. If all four wheels are moving forward, the vehicle will move forward.
2. If the front-left and rear-right wheels are moving backward, their force

vectors will be negated. If the other two wheels are moving forward,
then the vehicle’s overall movement will be sideways to the left.

3. If the front-right and rear-right wheels are moving backwards and the
other two forward, the vehicle will rotate clockwise on the spot.

By modifying the individual four wheel speeds, any possible driving angle,
combined with any possible angular self-rotation speed, can be achieved. For
more details and motion formulas see [Bräunl 2022]2.

Figure 7.5: Straight, left, and rotating robot motion with corresponding
Mecanum wheel directions

2 T. Bräunl, Embedded Robotics – From Mobile Robots to Autonomous Vehicles with Rasp-
berry Pi and Arduino, 4rd Ed., Springer Nature Singapore, 2022

Figure 7.6: Mecanum wheel designs for Omni-2 (left) and Omni-1 (right)

Alternative Drive Systems

82

7
As the free rollers only protrude a little bit above the rims, this wheel design

only works on hard floors, such as concrete or timber, and not on softer sur-
faces. A subsequent improvement was made by the US Navy, which com-
pletely eliminates the rims and instead holds each roller from a stay in the mid-
dle. That way, they can navigate softer surfaces as well. Our Omni-2 robot was
built following this updated wheel design (see Figure 7.3, right, and Figure
7.6, left).

We will now place a predefined Omni robot in a checkerboard environment
so that we can better see its movements (see the SIM script in Program 7.3 and
the screenshot in Figure 7.7).

The basic movement code just sets individual wheel speeds for each of the
four wheels. The C code is shown in Program 7.4; the Python version is almost
identical.

Program 7.3: Omni-robot SIM script

1 # Environment
2 world ../../worlds/small/Chess.wld
3
4 # Robot placement
5 Omni 600 600 0 omni-drive.x

Program 7.4: Sample Mecanum driving patterns in C

1 #include "eyebot.h"
2 void Mdrive(char* txt, int FLeft, int FRight,
3 int BLeft, int BRight)
4 { LCDPrintf("%s\n", txt);
5 MOTORDrive(1, FLeft);
6 MOTORDrive(2, FRight);
7 MOTORDrive(3, BLeft);
8 MOTORDrive(4, BRight);
9 OSWait(2000);

10 }
11
12 int main ()
13 { Mdrive("Forward", 60, 60, 60, 60);
14 Mdrive("Backward", -60,-60,-60,-60);
15 Mdrive("Left", -60, 60, 60,-60);
16 Mdrive("Right", 60,-60,-60, 60);
17 Mdrive("Left45", 0, 60, 60, 0);
18 Mdrive("Right45", 60, 0, 0, 60);
19 Mdrive("Turn Spot L",-60, 60,-60, 60);
20 Mdrive("Turn Spot R", 60,-60, 60,-60);
21 Mdrive("Stop", 0, 0, 0, 0);
22 return 0;
23 }

Skid-Steering

83

7.3 Skid-Steering
A number of robots as well as some loader vehicles in the building industry
use four driven wheels with just two motor signals (using a total or two or four
motors), so the two left wheels and the two right wheels always execute the
same movement (see Figure 7.8). If the wheels themselves are not steerable, as
is the case for some robots such as the Pioneer 3-AT, then its movements are
very similar to a chain drive, which will be discussed in the following section.

The effect of skid-steering is that the robot requires wheel slippage on every
turn it makes, but it will have a better grip than e.g. an Ackermann-drive vehi-
cle. This makes a skid-steering robot a good choice for outdoor driving on

Figure 7.7: Mecanum robot Omni-1 on checkerboard plate

Figure 7.8: Skid-steer vs. chain principle; group of Pioneer 3-AT robots

Alternative Drive Systems

84

7
grass or sand, but a very poor choice when driving in an indoor lab environ-
ment. After burning out a couple of motors when testing Pioneer 3-AT robots
in the lab before their outdoor deployment, our students have now resolved to
applying several layers of clear tape around the tire tracks of each robot, to
allow wheel slippage during indoor use.

Figure 7.9 shows a simple simulation of a Pioneer robot. It uses its three
front-facing PSDs (sonar sensors on the real robot) and the drive function
VWCurve to drive along its path, avoiding all cones.

7.4 Chain Drives and Terrain
Many mobile robots can only navigate on a flat surface. However, many prac-
tical robotics problems require robots to drive on uneven floors or even in arbi-
trary 3D terrain. While the mechanical changes on the robot for terrain driving
might be relatively simple, the challenge is now on the sensor side as well as
on the software side. Path planning in terrain requires a transition from 2D to
3D algorithms.

In the following, we show a couple of examples for driving in 3D terrain in
the EyeSim simulation environment. Before we do so, we should explain how
an environment file with 3D information can be constructed. The SIM script in
Program 7.5 is as simple as always. Here, we introduce a robot by the name of
Blizzard, which uses chains instead of wheels. It is a snow cat truck that exists
as a model car, which we transformed into a robot car. We will look at its driv-
ing program later.

Figure 7.9: Simulation of Pioneer 3-AT robot

Program 7.5: Terrain definition SIM script

1 # Environment
2 world ../../worlds/aquatic/crater.wld
3
4 # Robot
5 robot ../../robots/Chains/Blizzard.robi
6 Blizzard 400 400 0 terrain.x

Chain Drives and Terrain

85

The crater world file follows the Saphira world format that we adopted and
extended a while ago as one way to input an environment into EyeSim. In this
example, the WLD-file shown in Program 7.6 specifies a world volume in x, y
and z dimensions, while the relative elevation of each point is taken from the
crater.png grayscale image, mapping the [0, 255] range of each image pixel
onto the specified world height range of [0, 1000]. In addition, we define the
water level at a certain height (in this case 200). This will come in handy in a
later chapter where we work with submarines. In this example, it just creates a
water hazard inside the crater.

The PNG image file crater.png, which is used to generate the terrain, is just
a grayscale image (see Figure 7.10). Each pixel value is being translated into a
terrain elevation for the point it represents in 3D space. Further details can be
found in the EyeSim documentation. Figure 7.11 shows the resulting screen-
shot of the Blizzard robot driving around the crater landscape.

Program 7.6: Environment world file for terrain and water level

1 terrain 5000 5000 1000 ../heightmap/crater.png
2 water_level 200

Figure 7.10: Blizzard snow cat (left) and crater graphics file (right)

Program 7.7: SIM script specifying a 3D environment

1 # Environment
2 world ../../worlds/aquatic/levels-steel.wld
3
4 # robotname x y phi
5 LabBot 1000 1000 0 terrain.x

Alternative Drive Systems

86

7

We would now like to create an environment with ramps that a robot can
easily drive up and down, rather than the jagged mountain terrain we had
before. Our SIM script looks familiar (Program 7.7).

In the world file in Program 7.8 we define a world that creates continuous
3D levels according to the supplied heightmap graphics file steps.png (see Fig-
ure 7.12, left). A steel texture is used for the graphics effect (Figure 7.12, mid-
dle), which will be stretched out over the entire environment.

Any graphics editor can be used to create a heightmap file, even a slide-pre-
sentation software will do. In the heightmap file shown in Figure 7.12 (left),
black is floor level and white is the highest level. The actual numerical height
is specified in the world file (200mm in Program 7.8). So, we have created a

Figure 7.11: Blizzard robot closing in on water-filled crater

Program 7.8: World file for an environment with height levels and texture

1 floor_texture ../texture/steel.png
2 terrain 4000 4000 200 ../heightmap/steps.png

Chain Drives and Terrain

87

vertical ramp up (from dark to bright), a high horizontal bank (white) and a
ramp down (bright to dark), all in a square area surrounded by high walls
(white).

Changing the texture can be done by just replacing the first line in the world
file (Program 7.8), e.g. using the timber texture shown in Figure 7.12, right.
Figure 7.13 shows the final 3D environment in a steel texture with a LabBot
trying to find its way around the ramp. The inset top right shows the view from
the robot’s on-board camera – the same environment with a woodgrain finish
is shown in the inset bottom right.

Figure 7.12: Heightmap profile (left) and textures for steel and wood (right)

Figure 7.13: Robot environment with display for terrain example

Alternative Drive Systems

88

7

7.5 Tasks

• Write a program to drive an Ackermann steering robot from position (0,0) to specified
(x,y) goal coordinates. This can be done as follows:

• First rotate, then drive
• Drive along a circle
• Drive along a “dog curve”
• Drive along a Hermite spline curve

• Extend the program so that the robot arrives at the correct position (x,y) and also with
a specified orientation ϕ.

• Write a program that drives the Omni robot in a square without turning. Take advantage
of the sideways motions.

• Write a software interface that calculates individual wheel speeds for any given driving
angle.

• Write a program to let the Omni robot drive in a straight line while continuously rotat-
ing about itself.

• Write a program that drives the tracked robot to the highest point in a mountain range.
The robot should always re-orient itself towards the maximum gradient. Use PSD or
Lidar sensors and create a moderate terrain steepness so that the robot can cope.

• Write a program that can navigate a robot over the ramp shown in this chapter. Add
additional PSD sensors pointing down for detecting a cliff – and prevent the robot from
falling off.

8989

8BOATS AND
.

. .
SUBMARINES

utonomous boats and autonomous underwater vehicles (AUVs) are
an important sector of robotics research with huge commercial poten-
tial. They have also gained a larger interest in robotics research, due

to several autonomous boat and submarine competitions, such as RoboBoat1
and RobotX2. We have built a number of autonomous boats3 and submarines
over the years, which we will introduce in this section.

1 RoboBoat, https://roboboat.org
2 Maritime RobotX Challenge, https://robotx.org/programs/robotx-challenge-2022/
3 Design and photos of the autonomous solar boat are from Pierre-Louis Constant, UWA

A

Figure 8.1: Autonomous Solar Boat on the Swan River in Perth

© Springer Nature Switzerland AG 2023

T. Bräunl, Mobile Robot Programming, https://doi.org/10.1007/978-3-031-32797-1_8

https://roboboat.org
https://robotx.org/programs/robotx-challenge-2022/
https://doi.org/10.1007/978-3-031-32797-1_8
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32797-1_8&domain=pdf

Boats and Submarines

90

8

8.1 Autonomous Boats
Our autonomous solar boat uses a catamaran design, see Figure 8.1 and Figure
8.2, where back-up batteries and some sensors are placed in two waterproof
hulls, while other sensors, control system and communication modem are in a
watertight container between the hulls. The boat carries a 100W solar panel
and its two thruster motors let it drive and steer without the need for a rudder.

The boat uses a Raspberry Pi controller to interface to high-level sensors,
such as an echo-sounder for depth measurement, a GNSS4 receiver and a digi-
tal camera, as well as either a 4G/5G communication modem for use on lakes
and in coastal waters or a satellite modem for long distance missions. An addi-
tional ArduPilot controller is used mainly for its superior user interface and
built-in navigation functions. ArduPilot’s hardware is based on an Arduino
processor, enhanced with a built-in IMU sensor (inertial measurement unit), as
well as a GPS interface and several servo outputs.

Figure 8.3 shows the mission plan (white) and the actual path taken by the
Solar Boat (green) in Perth’s coastal waters. Although the boat overall follows
the outlined path, it still deviates significantly from the desired lines due to
wind, so there is still room for improvement for the boat’s path control.

Figure 8.2: Autonomous Solar Boat training in the UWA pool

4 Global Navigation Satellite System

Autonomous Submarines

91

8.2 Autonomous Submarines
Our first AUV is Mako [Bräunl et al. 2004]5, see Figure 8.4, top, which has
four thrusters: two horizontal thrusters for driving forward/backward/sideways
in differential drive mode and two vertical thrusters (front and back) for div-
ing. The AUV is naturally buoyant, so it will surface if the two diving motors
are stopped.

Our second UAV is called USAL (Figure 8.4, bottom, and simulation in
Figure 8.8) and uses a single stern thruster with a rudder for steering. Diving is
accomplished with a central vertical thruster plus a bow pump, which pumps
water from one side to the other, in order to counteract the propeller’s rota-
tional momentum – similar to the stern rotor of a helicopter.

8.3 Simulating Boats and Submarines
The autonomous solar boat simulation is shown in Figure 8.5 for a small pool
environment. All that is required for setting it up are three lines in a SIM-file:
one for selecting the environment (here pool-s.wld), one for introducing the

Figure 8.3: Autonomous surveying

5 T. Bräunl, A. Boeing, L. Gonzales, A. Koestler, M. Nguyen, J. Petitt, The Autonomous Un-
derwater Vehicle Initiative - Project Mako, 2004 IEEE Conference on Robotics, Automa-
tion, and Mechatronics (IEEE-RAM), Dec. 2004, Singapore, pp. 446-451 (6)

Boats and Submarines

92

8

‘Solarboat’ robot type and one for placing it at the desired position and orienta-
tion in the aquatic world (Program 8.1).

Figure 8.4: Mako and USAL autonomous submarines

Figure 8.5: Solar Boat simulation in EyeSim

Program 8.1: SIM script for Solar Boat

1 world ../../worlds/aquatic/pool-s.wld
1 robot ../../robots/Boats/solarboat.robi
1 Solarboat 3000 3000 0 boat.x

Simulating Boats and Submarines

93

The referenced world file also required just three lines: one for selecting the
blue water texture, one for the terrain map (a simple image file where each
pixel represents a height) with dimensions for x, y, z in [mm], and one line for
specifying the water level in [mm] (Program 8.2).

All required hydrodynamics equations for simulating boats and submarines
have been included in EyeSim and we have already seen in the earlier section
on terrain driving how to set up a hilly environment. All we are doing here is
adding water. The terrain map is a grayscale image file where the value of each
pixel (between 0 and 255) represents a height (or rather a depth in this case). It
can be very simple for a pool (just a white rectangle on a black background) or
a more complex ocean floor or river bed structure. The water level in the last
line is just a number for the overall depth. You can create a mix of an ocean
and islands by choosing a terrain level higher than the water level, similar to
the water-filled crater we constructed earlier.

The sample heightmap in Figure 8.6, left, is a very basic graphics file with
only two colors: black (elevation 0) over the whole pool area with a white wall
(elevation 255, which here equals 2m) surrounding it. The pool floor texture
olympic-pool.png in Figure 8.6, right, is a structured water-colored texture that
indicates realistic ripples.

The terrain parameters in the world file specify the dimensions in x and y, as
well as the maximum terrain height, which in this case is the wall around the
pool (2,000mm). The water level is set to 1,900mm in the following line of the
world file, so it is 100mm below the surrounding pool wall. The completed
SIM file for Mako in Program 8.4 is now almost identical to the previous SIM
file for the Solar Boat.

Figure 8.7 shows the resulting scenario of the Mako submarine swimming
in the pool with its local camera view shown as an inset.

Program 8.2: Small pool world file

1 floor_texture ../texture/rough-blue.jpg
2 terrain 6000 6000 2000 ../heightmap/olympic-pool.png
3 water_level 1900

Figure 8.6: Pool heightmap and texture

Boats and Submarines

94

8

8.4 Submarine Diving
The short example in Program 8.4 only uses Mako’s two dive motors that are
located in the front and in the back. Not being used are the two side-mounted
differential drive thrusters. We will engage them in the next section.

Via the menu buttons KEY1, KEY2 and KEY3 the user can activate diving,
stop diving or breaching the submarine. This will actuate both dive motors
together in the diving direction, stop them or reverse them. Pushing button
KEY4 will terminate the program. User function dive activates the front and
rear diving motors simultaneously, while the main program reads and displays
the camera image using functions CAMGet and LCDImage.

Program 8.3: AUV underwater SIM script

1 # Environment
2 world ../../worlds/aquatic/pool.wld
3
4 # Load custom robot
5 robot ../../robots/Submarines/mako.robi
6
7 # Robot position (x, y, phi) and executable
8 Mako 12500 5000 0 mako-dive.x

Figure 8.7: Mako in pool environment with controller screen

Submarine Movement

95

Sensor PSD_DOWN is being used to calculate and then display the remain-
ing depth between the submarine and the pool floor.

8.5 Submarine Movement
Only a few lines of code need to be changed to test Mako’s movement instead
of its diving. Function drive in Program 8.5 now takes two parameters – the
speeds of the left and right motors. In the main program, we associate the key
button activation with driving forward and rotating left or right. To accomplish
these movements, we simply specify the left and right motor speeds. In this
example, we only use the speed values for full forward, full backward and stop
(+100, –100, 0); however, the whole value range can be used for fine-tuning
AUV movements.

Program 8.4: Mako submarine diving in C

1 #include "eyebot.h"
2
3 #define LEFT 1 // Thruster IDs
4 #define FRONT 2
5 #define RIGHT 3
6 #define BACK 4
7 #define PSD_DOWN 6 // new PSD direction
8
9 void dive(int speed)

10 { MOTORDrive(FRONT, speed);
11 MOTORDrive(BACK, speed);
12 }

13
14 int main()
15 { BYTE img[QVGA_SIZE];
16 char key;
17
18 LCDMenu("DIVE", "STOP", "UP", "END");
19 CAMInit(QVGA);
20 do { LCDSetPrintf(19,0, "Dist to Ground:%6d\n",
21 PSDGet(PSD_DOWN));
22 CAMGet(img);
23 LCDImage(img);
24
25 switch(key=KEYRead())
26 { case KEY1: dive(-100); break;
27 case KEY2: dive(0); break;
28 case KEY3: dive(+100); break;
29 }
30 } while (key != KEY4);
31 return 0;
32 }

Boats and Submarines

96

8

8.6 Tasks

Program 8.5: Mako driving forward, left and right in C

1 void drive(int l_speed, int r_speed)
2 { MOTORDrive(LEFT, l_speed);
3 MOTORDrive(RIGHT, r_speed);
4 }

5
6 int main()
7 { LCDMenu("FORWARD", "LEFT", "RIGHT", "END");
8 ...
9 switch(key=KEYRead())

10 { case KEY1: drive(100, 100); break;
11 case KEY2: drive(-100, 100); break;
12 case KEY3: drive(100, -100); break;
13 }
14 ...
15 }

Figure 8.8: USAL autonomous submarine in EyeSim simulation

• Write an AUV program that performs wall following along the sides of a pool.
• Write an AUV program that scans the whole pool area (or ocean floor of a given range)

and automatically generates a depth map.
• Change the camera orientation to face down, and then write an AUV program that

searches the pool or ocean floor for a specific object, e.g. using color coding.

9797

9
.

. .
MAZES

xploring a maze can be great fun – be it walking through a full-size
maze or solving it as a puzzle. Solving a maze problem in simulation
before trying a run with a real robot is highly recommended, as it helps

to greatly reduce software development and debugging time. If the difference
between simulated and real robot behavior, the so-called reality gap, is suffi-
ciently small, then the transition between simulation and reality will be quite
smooth.

Mazes are also a great skill tester for robots. One of the very first competi-
tions for mobile robots was the Amazing MicroMouse Maze Contest (see Fig-
ure 9.1), which was first proposed in May 1977 in IEEE Spectrum and – after
some trial events – held its first final in 1979 in New York City [Allan 1979]1.

1 R. Allan, The amazing micromice: see how they won, IEEE Spectrum, Sept. 1979, vol. 16,
no. 9, pp. 62-65 (4)

E

Figure 9.1: Competition mazes for London 1986 and Los Angeles 2022

© Springer Nature Switzerland AG 2023

T. Bräunl, Mobile Robot Programming, https://doi.org/10.1007/978-3-031-32797-1_9

https://doi.org/10.1007/978-3-031-32797-1_9
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32797-1_9&domain=pdf

Mazes

98

9

9.1 Micromouse
The Micromouse contest has been a robotics benchmark for generations of
engineering and computing students. Although it dates back to 1977, there are
still competitions being held today.

The task sounds simple: place the robot in the start square in the bottom left
corner of the maze and let it find the central goal square. Whichever robot
drives the fastest from start to goal wins. Of course, the robot must not be told
the shortest path, so it requires previous runs to explore the maze and calculate
the best route. Each robot gets a limited maze exploration time; whenever it
returns to the start square, a new run timer is started – only the shortest run
counts.2

The full maze is made out of 16 × 16 cells, which are each 18cm × 18cm in
size. All wall segments are 5cm high and 1.2cm thick.

Teams have used all types of approaches to win this competition. The first
robots were purely electromechanical without a microprocessor brain. Their
technique was dubbed “wall hugging” because they were always following
the left-most wall, which is a standard way to safely escape any planar maze.
Although they did not even attempt to calculate the fastest path, they were
faster than the more sophisticated intelligent robots in the 1970s. A rule
change that placed the goal in the middle of the maze, without any connecting
wall to the rest of it, eliminated this approach.

After that there was an evolution of sensor technology. From sonar sensors
to infrared distance sensors, from Lidar to vision. Even an “outrigger-style”
sensor placement above the walls was allowed, which helped to detect walls
more reliably and more accurately than other methods. Finally, improvements
in the drive system and wheel traction were required to make the robots faster.
If you watch any recent Micromouse competition live or online, you will be
amazed by their speed [YouTube 2017]3.

9.2 Wall Following
As previously mentioned, always following the left-most wall (or always fol-
lowing the right-most wall – but not changing tactics in between) will let you
find the exit of a planar maze (which has to be on the outside of a 2D maze), or
it will bring you back to the starting point if the entry and exit are at the same
location.

We have a simple method of specifying maze environments in the EyeSim
simulator by allowing character-graphics environment files. The example in
Figure 9.2 is a small maze, which uses character S as a placeholder for the
robot’s starting position so it can be automatically centered in the start square.

2 RoboGames, Maze Solving / Micromouse Rules, 2019, robogames.net/rules/maze.php
3 2017 All Japan classic micromouse contest 1st prize, www.youtube.com/watch?v=

LAYdXIREK2I

http://www.youtube.com/watch?v=LAYdXIREK2I
http://www.youtube.com/watch?v=LAYdXIREK2I

Wall Following

99

Using an uppercase character such as the S in the example assumes that there
will also be a wall below the character, which is something we cannot draw
using character graphics.

This environment (stored as text file small.maz) can then be loaded into the
simulator via the SIM script in Program 9.1. Placeholder S marks the robot’s
starting position and an orientation of 90° is chosen to let it face upwards (ori-
entation 0° is along the x-axis to the right).

The environment and robot are shown in the screenshot in Figure 9.3. The
robot is already engaging its standard three PSD sensors (front, left, right),
which are shown as green beams in the visualization.

Figure 9.2: Maze input as character graphics

_		_	
S	_____	_	

Program 9.1: Maze environment SIM script

1 # Environment
2 world small.maz
3
4 # Robot description file using "S" as start position
5 S4 S 90 maze_left.x

Figure 9.3: Maze input as character graphics

Mazes

100

9
The full algorithm (Program 9.2) is fairly simply as it has only about ten

lines of code, not counting comments and blank lines. In the main while-loop,
we check for possible walls to the front, left and right by reading out the corre-
sponding PSD sensors as shown in the diagram on the left. These three
answers will just be true or false (1 or 0).

The second step is conducting rotations. If the left side is free, we need to
make a left turn. Function VWTurn will execute a rotation about the given
angle and then stop. We need to use VWWait following VWTurn in order to
halt the execution of the program until this motion command has been com-
pleted. Otherwise our program would quickly go into the next loop iteration
and the next motion command would wipe out the current one. That means the
robot would not even start to move.

In the else-case (when there is a wall to the left), we check whether the front
is clear. If so, we should go straight, so no rotations are required – hence the
empty brackets. The second else means that there are walls to the left and to
the front, so we check whether we can go right. If yes, we turn right (the same
sequence of VWTurn, only in the opposite direction, followed by VWWait).

The final else-case means that there must be walls to the left, front and
right, so our robot is caught in a dead end. It therefore has to turn 180° before it
can move again.

The third step after all these rotations is to move forward by exactly one
square. Function VWStraight followed by VWWait does exactly that. Linear
and angular speed are set in a way that the robot completes driving of one

Program 9.2: Left-hand following in C

1 #include "eyebot.h"
2 #define THRES 400
3
4 int main ()
5 { int Ffree,Lfree,Rfree;
6 LCDMenu("","","","END");
7 do
8 { // 1. Check walls
9 Ffree = PSDGet(PSD_FRONT) > THRES;

10 Lfree = PSDGet(PSD_LEFT) > THRES;
11 Rfree = PSDGet(PSD_RIGHT) > THRES;
12
13 // 2. Rotations
14 if (Lfree) { VWTurn(+90, 45); VWWait(); }
15 else if (Ffree) { }
16 else if (Rfree) { VWTurn(-90, 45); VWWait(); }
17 else { VWTurn(180, 45); VWWait(); }
18
19 // 3. Driving straight 1 square
20 VWStraight(360, 180); VWWait();
21 } while (KEYRead() != KEY4);
22 }

Wall Following

101

square as well as turning ±90° in about two seconds. Also note that we are
driving 36cm instead of 18cm as per the Micromouse rules. Our real robots are
too large for this maze size, so we just doubled the dimensions.

Logically, this program is very clear and it should work perfectly, as shown
in the diagram in Figure 9.4. Going left wherever possible should let us drive
to the maze’s exit (or back to the start)–– only, it does not!

If you look at the screenshot in Figure 9.5, you will get an idea of what hap-
pened. The simulated robot (very much like a real one) does not drive perfectly
straight nor turn perfectly 90°. Its small driving errors accumulate and it does
not take long until the robot collides with a wall. The subsequent wheel slip-
page make it lose its internal orientation and there will be no recovery from
this incident.

Figure 9.4: Left-hand following method

Figure 9.5: Left-hand following method

Mazes

102

9

9.3 Robustness and Control
The key phrase we are looking for is called robustness. We need a robot pro-
gram that not only works for an unrealistically perfect simulated world, but
also for a real robot with its small deviations in actuators and sensors. Our pre-
vious program issued driving commands but never checked their results. We
need to expand this program to make sure the robot stays centered between
two walls when driving and that slightly incorrect turns will be compensated
for in subsequent driving commands.

The only part we need to change is the routine for driving straight (step 3).
Instead of the code line containing VWStraight followed by VWWait, we need
an extended program as outlined below. In this approach, we are implementing
two ideas:

1. Drive the correct distance
a. Limit the driving distance –

In each iteration, we calculate the driving distance using Pythagoras’
formula
 drivedist = √((x2–x1)2 + (y2–y1)2) .
We only continue driving while drivedist < MSIZE (the size of one
square in the maze).

b. Check for front wall –
If the robot has driven a bit too far and the front wall is getting too
close, it will also terminate this “driving straight” operation. The min-
imum front distance should be half the square size (MSIZE/2) minus
half the robot size, around 50mm. So we only continue to drive if
freespace F > MSIZE/2 – 50 .

2. Keep the correct wall distance
In every iteration, we measure the left and right PSD distance values and
we have to distinguish several different cases.
a. There is an immediate wall to the left and the right –

→ Keep the robot exactly in the middle between the two walls.
b. There is only a wall on the left and a gap to the right –

→ Only rely on the left wall distance and the known size of the square
 to keep the desired robot distance from the wall.

c. There is only a wall on the right and a gap to the left –
→ Similarly, only rely on the right PSD value.

d. There are gaps to the left and to the right –
→ With no immediate wall for orientation, just keep driving straight.

Program 9.3 uses VWGetPosition before the loop and at the end of each
iteration to calculate the distance driven so far. If the left PSD distance value L
is in the range [100, 180] at a square size of 360mm, then there must be a wall
to the left. If L is outside this range, we assume there is a gap; the same applies
to distance R for the right side.

Robustness and Control

103

The four nested if-else selections test for the four cases: both walls avail-
able, only left, only right or no wall on either side. In each case, we use the
function VWSetSpeed for driving the robot. Its two parameters are linear speed
(we just use a constant) and angular speed, which we calculate as the differ-
ence between the left and right wall distance (if we have both walls) or the dif-
ference between the desired wall distance and the actual measured distance (if
there is only one wall available).

If there is a wall to both sides, we want the left distance to be equal to the
right so that our curve value is L–R. This will be zero if the robot is perfectly in
the middle. If L>R then L–R will be positive, so the robot will be turning left.
And vice versa for R>L. Note that this method of steering actually constitutes
a proportional control or P-control [Bräunl 2022]4. The larger the error, the
larger the control (steering) value. One can use a proportionality factor, but
just using 1 (or omitting it) works perfectly in this case.

If there is only a wall to the left (second case), we use the same function,
but we use L–DIST as the desired control value (DIST is the desired wall dis-
tance). Similarly, R-DIST is used if there is only a wall to the right (third case).

And finally (fourth case), if there are no immediate walls to either side, we
continue to drive straight.

As can be seen from the screenshots of traversing the maze in Figure 9.6,
the robot does quite a good job, despite not always turning exactly 90°. Some
corrections have to be done, which result in a wiggly motion. This can be
improved with better control algorithms, such as PID-control (proportional
integral differential control), and by using additional sensors, for example,
reading the calculated (x,y) position from the wheel encoders via the function
VWGetPosition to find the robot’s displacement. We currently use this only to
terminate driving when the next square cell has been reached.

Program 9.3: Controlled left-hand following in C

1 VWGetPosition(&x1,&y1,&phi1);
2 do
3 { L=PSDGet(PSD_LEFT); F=PSDGet(PSD_FRONT);
4 R=PSDGet(PSD_RIGHT);
5 if (100<L && L<180 && 100<R && R<180) // check space
6 VWSetSpeed(SPEED, L-R); // drive difference curve
7 else if (100<L && L<180) // space check LEFT
8 VWSetSpeed(SPEED, L-DIST);// drive left if left>DIST
9 else if (100<R && R<180) // space check RIGHT

10 VWSetSpeed(SPEED, DIST-R); // drive left if DIST>right
11 else // no walls for orientation
12 VWSetSpeed(SPEED, 0); // just drive straight
13 VWGetPosition(&x2,&y2,&phi2);
14 drivedist = sqrt(sqr(x2-x1)+sqr(y2-y1));
15 } while (drivedist<MSIZE && F>MSIZE/2-50); // terminate

4 T. Bräunl, Embedded Robotics – From Mobile Robots to Autonomous Vehicles with Rasp-
berry Pi and Arduino, 4th Ed., Springer Nature, Singapore, 2022

Mazes

104

9

9.4 Maze Driving with Lidar
Having only three data points (PSD for front, left and right) is obviously a
large restriction. Using a Lidar instead will give us a much richer data volume
of several hundred to several thousand distance points. The algorithm for driv-
ing with a Lidar is as follows in an endless loop:

1. Conduct a Lidar scan around the left side of the robot,
angles [45°, 135°].

2. Find the smallest scan value and corresponding angle.
This defines the angle of the left wall location α;
see diagram Figure 9.7, left.

3. Use VWCurve to drive parallel to the wall.
4. If the robot gets close to the wall in front (scan[180] < THRES)

then stop and turn right by 90° using VWTurn followed by VWWait.

Figure 9.6: Maze-driving with P-controller for pose correction

Maze Driving with Lidar

105

For calculating the correct driving angle, we can look at the diagram in Fig-
ure 9.7, right. The robot scans a total area of 90° centered around its left side,
which is the angular range [45°, 135°] from the robot’s forward perspective.
We can then determine the angle and length of the shortest beam (angle α and
length s in Figure 9.7). Since the shortest beam will hit the wall at a right angle
(90°), we have α + β = 90°. Ideally, α should be 90° so that β equals 0°, which
means driving parallel to the wall. If angle α is less than 90°, then the robot is
steering into the wall and needs to veer right; if the angle is greater than 90°,
then the robot is steering away from the wall and needs to veer left.

We need to control two variables here:
• the robot’s angle from the wall α, and
• the robot’s distance from the wall s.

We have the following sensor values:
• the shortest distance to the left wall s, and
• the front collision distance a (only if α < 90°)
For driving the robot, we use the VWCurve function. Using a constant dis-

tance and linear speed, we only need to control the angular speed. We use a
combined proportional controller or P-controller for the two variables [Bräunl
2022]5. In a P-controller, a larger error term will result in a larger output value
– using a proportionality factor k.

The first term controls the robot’s orientation
k1 · (α – 90°) .

If the angle is correct at 90°, then the term is zero. A smaller angle (ro-
bot steering into the wall) results in a negative value, which will steer
the robot to the right. If the angle is larger than 90° (robot drifting
away), a positive result will steer it to the left.

Figure 9.7: Lidar measures left and front of robot (left) and angle calculation
from Lidar distances (right)

5 T. Bräunl, Embedded Robotics – From Mobile Robots to Autonomous Vehicles with Rasp-
berry Pi and Arduino, 4th Ed., Springer Nature, Singapore, 2022

Mazes

106

9
The second term controls the robot’s wall distance

k2 · (s – 250mm) .
If the robot is exactly at the desired wall distance of 250mm, then this
term is zero. The further the robot is away from the ideal distance, the
larger this term gets, which will steer the robot to the left. If the robot
is too close to the wall, the term becomes negative and the robot steers
to the right, away from the wall.

In practice, we found by experiment good values to be k1 = 5 and k2 = 0.5.
Of course there are also formal methods for finding optimal control parameters
[Aström, Hägglund 1995]6.

The code for the Lidar scanning and driving routine is shown in Program
9.4. Note that the Lidar angles count clockwise from the back (back = 0°, front
= 180°), so α = 180° – angle.

We also plot the detected Lidar points at their correct position to the EyeBot
LCD, generating a global environment map, as shown in Figure 9.8. The algo-
rithm design and program implementation was done by Joel Frewin at the
UWA Robotics & Automation Lab, and adapted by the author.

The robot successfully traverses the complete maze and at the same time
generates its Lidar-based internal representation, shown to the right at each
stage in Figure 9.8. These look quite accurate until about three quarters of the
way through the maze exploration phase. Unfortunately, the angular dead-
reckoning error accumulates over time and leads to incorrect mapping (see the
final screenshot of the sequence in Figure 9.8). The same phenomenon hap-
pens with real robots and is one of the largest challenges in localization and
mapping. The most popular method for solving this problem is a statistical
method called Simultaneous Localization and Mapping, or SLAM for short
[Durrant-Whyte, Bailey 2006]7, [Bailey, Durrant-Whyte 2006]8.

Program 9.4: Lidar maze exploration in C

1 while (KEYRead() != KEY4)
2 { LIDARGet(scan);
3 if(scan[180] < 300) // check for front collision
4 VWTurn(-90, 360); VWWait(); // turn right 90°
5 findMin(scan, 45,135, &angle, &s); // check left
6 printf("min angle %d val %d\n", angle, s);
7 a = 180-angle;
8 VWCurve(50, k1*(a-90) + k2*(s-250), SPEED);
9 }

6 K. Aström, T. Hägglund, PID Controllers: Theory, Design, and Tuning, 2nd Ed., Instru-
ment Society of America, Research Triangle Park, NC, 1995

7 H. Durrant-Whyte, T. Bailey, Simultaneous Localisation and Mapping (SLAM): Part I,
IEEE Robotics & Automation Magazine, vol. 13, no. 2, June 2006, pp. 99–110

8 T. Bailey, H. Durrant-Whyte, Simultaneous Localisation and Mapping (SLAM): Part II,
IEEE Robotics & Automation Magazine, vol. 13, no. 3, Sep. 2006, pp. 108–117

Maze Driving with Lidar

107

Figure 9.8: Lidar maze drive (left) and internal representation (right)

Mazes

108

9

9.5 Recursive Maze Exploration
Applying the “left-wall following” algorithm cannot solve a Micromouse
maze that has the goal is in the center without a connecting wall to the starting
square. This means, we have to use a more sophisticated method to explore the
whole maze and not just a part of it. Since we know that the complete maze is
made out of 16×16 square cells, we can create an internal data structure and
mark every cell that is visited. That way, we can tell whether we have seen all
the cells. Note that depending on the maze construction, some cells may be
blocked off completely by walls so they can never be reached.

Arguably the easiest way to fully explore the maze is using a recursive algo-
rithm9. So instead of going always left, if possible, at any new square cell (see
Figure 9.9, left), all free directions have to be explored. So, if the robot comes
to a square cell where the left, front and right are open (see Figure 9.9, right),
then the robot has to explore each of these directions, one after the other (but
not necessarily in the order left, front, right).
The function explore uses recursion to search the maze.

For directions left, front, right – if free and not visited previously:
• Drive one square to this free neighbor square.
• Mark the new square as visited.
• Recursively call function explore from the new position.
• Drive one square back to the previous position and orientation.

The maze in Figure 9.10 shows the recursive path of the robot. At the first
two square cells, there is no choice in exploration, e.g. the second cell only has
the front and back walls open, so the robot just passes through. However, the
third cell is a branching point marked by a red circle, which has two openings
besides the entry point – one in front and one to the right. Here, we are not
making a choice, instead we need to explore both directions: first we let the
robot drive straight (which turns out to be a dead end), and then we let it come
back to the square with the red dot and afterwards explore the other direction
to the (original) right. We use the data structures shown in Program 9.5.

Figure 9.9: Left-hand following (left) vs. recursive exploration method (right)

9 An algorithm or subroutine is called recursive if the body of the subroutine calls itself (with
different parameters or changed global variables).

Recursive Maze Exploration

109

The main program has a number of tasks:
1. Initialize the variables.
2. Call the recursive function explore.
3. Let the user select a goal square.
4. Calculate the shortest path from start square to goal.
5. Drive to the goal by the shortest route.
6. Drive back to the start.

Program 9.6 shows the first part of the code for the exploration function.
This is to mark the new square in array mark, then read all three PSD sensors.
Any walls found are entered into the internal data structure with the function
maze_entry and function check_mark then checks whether the new data have
completed all four sides of a yet incomplete square. If so, the robot knows
everything there is about this square and also marks it as visited. That way the
robot will not have to drive into this square at a later stage and the exploration
process can be shortened.

In the second part of explore (Program 9.7), the function checks whether
any or all of the three directions, front, left and right, are accessible and the
square behind it is still unexplored. If so, the function go_to will drive the
robot in this direction. There, it will call explore recursively, after which go_to
will bring the robot back to the current position. This will guarantee that the
robot will explore all possible open directions, one after the other.

Figure 9.10: Recursive exploration method

Program 9.5: Global variable declarations for maze in C

1 int mark[MAZESIZE][MAZESIZE]; // 1=visited
2 int wall[MAZESIZE+1][MAZESIZE+1][2]; // 1= wall, 0=free
3 int map [MAZESIZE][MAZESIZE]; // distance to goal
4 int nmap[MAZESIZE][MAZESIZE]; // copy
5 int path[MAZESIZE*MAZESIZE]; // shortest path

Mazes

110

9

Driving function go_to has the desired direction as a parameter, which
makes this function a lot more useful. The direction is given as [0, 1, 2, 3]
meaning [North, West, South, East].

The function calculates the difference between the desired angle and the
robot’s current steering angle. If this difference is not equal to zero, the robot
will execute the required turn as a multiple of 90° rotations. Subsequently, the
robot drives one square forward using the previously described driving method
with a P-controller.

Finally, the subroutine in Program 9.8 updates the robot’s position and ori-
entation (rob_x, rob_y, rob_dir). Instead of using a complex formula, we call
our subroutines xneighbor and yneighbor, which use a switch statement for the
four cases to update each coordinate.

Program 9.6: Recursive maze exploration function (part 1) in C

1 void explore()
2 { int front_open, left_open, right_open, old_dir;
3
4 mark[rob_y][rob_x] = 1; /* mark current square */
5 left_open = PSDGet(PSD_LEFT) > THRES;
6 front_open = PSDGet(PSD_FRONT) > THRES;
7 right_open = PSDGet(PSD_RIGHT) > THRES;
8 maze_entry(rob_x,rob_y,rob_dir, front_open);
9 maze_entry(rob_x,rob_y,(rob_dir+1)%4, left_open);

10 maze_entry(rob_x,rob_y,(rob_dir+3)%4, right_open);
11 check_mark();
12 old_dir = rob_dir;
13 ...

Program 9.7: Recursive maze exploration function (part 2) in C

1 ...
2 if (front_open && unmarked(rob_y,rob_x,old_dir))
3 { go_to(old_dir); // go 1 forward
4 explore(); // recursive call
5 go_to(old_dir+2); // go 1 back
6 }
7
8 if (left_open && unmarked(rob_y,rob_x,old_dir+1))
9 { go_to(old_dir+1); // go 1 left

10 explore(); // recursive call
11 go_to(old_dir-1); // go 1 right, (-1 = +3)
12 }
13 if (right_open && unmarked(rob_y,rob_x,old_dir-1))
14 { go_to(old_dir-1); // go 1 right, (-1 = +3)
15 explore(); // recursive call
16 go_to(old_dir+1); // go 1 left
17 }
18 } // end explore

Recursive Maze Exploration

111

To avoid 270° turns in one direction, the additional statements shown in
Program 9.9 are inserted to reduce it to a 90° turn in the opposite direction.

The function explore will let the robot traverse the maze and at the same
time reproduce it in its internal data structure. An example maze structure is
shown in Figure 9.11.

Program 9.8: Turning and driving one square cell in C

1 void go_to(int dir)
2 { int turn;
3 static int cur_x, cur_y, cur_p;
4
5 dir = (dir+4) % 4; // keep direction in [0, 3]
6 turn = dir - rob_dir;
7 if (turn)
8 { VWTurn(turn*90, ASPEED); VWWait(); }
9

10 Controlled_Straight(DIST, SPEED; // P-contr. straight
11 rob_dir = dir;
12 rob_x = xneighbor(rob_x,rob_dir);
13 rob_y = yneighbor(rob_y,rob_dir);
14 }

Program 9.9: Avoiding 270° turns in C

1 if (turn == +3) turn = -1; // turn shorter angle
2 if (turn == -3) turn = +1;

Figure 9.11: Completed internal maze representation

..................................

._._._._._._._._._................

| _ _ _ _ _| |...............

| | _ _ _ | |_ _|...............

| | |_ _ _ | | | |...............

| | _ _|_ _| _|...............

| |_|_ _ _ _ _ _ |...............

| |_ _ | _ | |...............

| _ | |_ _| | _|...............

| | | | | _ _ |...............

|.|_ _ _|_ _ _ _|_|...............

Mazes

112

9

9.6 Flood-Fill
If we are given the goal coordinates by the user (or they are predefined as in
the Micromouse competition), we need to figure out how to get from S (start)
to G (goal). An excellent method for this is a flood-fill algorithm for counting
the distance steps of every maze square from the start. You can imagine this as
pouring water into the starting square of the maze and seeing how long it takes
for each square cell to get wet. In the example in Figure 9.12, it will take zero
steps for the starting square, one step for the cell above it and two steps for the
next, but then we have two cells with three steps, the next one up and the one
to the right. They both get token “3” and we continue as shown.

The core of the flood-fill algorithm is shown in Program 9.10. The outer do-
loop calls the inner for-loop as long as the goal cell has not been reached and
the loop counter does not exceed the number of cells (MAZESIZE2). After this,
the distance map is complete.

The inner for-loop runs over all square cells in the maze. For each one, it
checks the four directions (North, West, South, East). If there is an unmarked
accessible neighboring cell (–1), it will mark it with the neighbor’s distance
value plus one. After the completion of the inner loop, we copy back the dis-
tance array to avoid marking more distant cells in the same step.

Eventually, we reach the goal destination, which in this example is the top
right cell that happens to have a distance value of 40 (see Figure 9.13).

So, by now we know two things:
• the goal position is reachable from the start, and
• the shortest path from start to the goal has 40 steps.

However, we do not know yet what the actual path is. We will solve this in
the next and final step.

Figure 9.12: Steps of flood-fill algorithm

 -1 -1 -1 -1 -1 -1

4 -1 -1 -1 -1 -1

3 -1 -1 -1 -1 -1

2 3 4 -1 -1 -1

1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

3 -1 -1 -1 -1 -1

2 3 -1 -1 -1 -1

1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1

5 -1 -1 -1 -1 -1

4 -1 -1 -1 -1 -1

3 -1 -1 -1 -1 -1

2 3 4 -1 -1 -1

1 -1 5 -1 -1 -1

0 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

2 -1 -1 -1 -1 -1

1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1

Shortest Path

113

9.7 Shortest Path
Trying to find the path from the start to the goal step-by-step will not work, as
there are multiple possible directions at every branching point and we do not
know which one to take. For example, if we are going from the start 0 → 1 →
2, we then have a 3 to the top and a 3 to the right. We are lost.

Program 9.10: Flood-fill algorithm in C

1 iter=0;
2
3 do
4 { iter++;
5 for (i=0; i<MAZESIZE; i++) for (j=0; j<MAZESIZE; j++)
6 { if (map[i][j] == -1)
7 { if (i>0)
8 if (!wall[i][j][0] && map[i-1][j] != -1)
9 nmap[i][j] = map[i-1][j] + 1;

10 if (i<MAZESIZE-1)
11 if (!wall[i+1][j][0] && map[i+1][j] != -1)
12 nmap[i][j] = map[i+1][j] + 1;
13 if (j>0)
14 if (!wall[i][j][1] && map[i][j-1] != -1)
15 nmap[i][j] = map[i][j-1] + 1;
16 if (j<MAZESIZE-1)
17 if (!wall[i][j+1][1] && map[i][j+1] != -1)
18 nmap[i][j] = map[i][j+1] + 1;
19 }
20 }
21
22 for (i=0; i<MAZESIZE; i++) for (j=0; j<MAZESIZE; j++)
23 map[i][j] = nmap[i][j]; // copy back
24 } while (map[goal_y][goal_x] == -1 &&
25 iter < (MAZESIZE*MAZESIZE));

Figure 9.13: Steps of flood-fill algorithm

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

 8 9 10 11 12 13 38 39 40 -1 -1 -1 -1 -1 -1 -1

 7 28 29 30 31 32 37 40 -1 -1 -1 -1 -1 -1 -1 -1

 6 27 36 35 34 33 36 21 22 -1 -1 -1 -1 -1 -1 -1

 5 26 25 24 25 34 35 20 21 -1 -1 -1 -1 -1 -1 -1

 4 27 24 23 22 21 20 19 18 -1 -1 -1 -1 -1 -1 -1

 3 12 11 10 11 14 15 16 17 -1 -1 -1 -1 -1 -1 -1

 2 3 4 9 12 13 14 15 16 -1 -1 -1 -1 -1 -1 -1

 1 8 5 8 9 12 13 14 15 -1 -1 -1 -1 -1 -1 -1

 0 7 6 7 10 11 12 13 16 -1 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Start

Goal

Mazes

114

9
Working backwards is the key to finding the shortest path (Figure 9.14). If

we start from the goal at distance value 40, then look for a neighboring cell
without a wall in between that has value 39, then 38 and so on, we will eventu-
ally come back to the starting point at 0. If there was a point where we had a
choice (e.g. assume there were two square cells with a value of 37 neighboring
the 38), then there would be two different shortest paths. In this case it does not
matter which one we choose.

The function for calculating the shortest path is shown in Program 9.11. We
use a countdown loop over the known length of the shortest path (40 in this
example) and in every step we look for a connected (wall-free) neighboring
cell with the current value of k.

Since we have now stored the complete path from the goal back to the start,
it will be very easy to just read the path in reverse order and drive the robot

Figure 9.14: Steps of back-to-front pathfinding algorithm

 8 9 10 11 12 13 38 39 40

 7 28 29 30 31 32 37 40 -1

 6 27 36 35 34 33 36 21 22

 5 26 25 24 25 34 35 20 21

 4 27 24 23 22 21 20 19 18

 3 12 11 10 11 14 15 16 17

 2 3 4 9 12 13 14 15 16

 1 8 5 8 9 12 13 14 15

 0 7 6 7 10 11 12 13 16S

G 8 9 10 11 12 13 38 39 40

 7 28 29 30 31 32 37 40 -1

 6 27 36 35 34 33 36 21 22

 5 26 25 24 25 34 35 20 21

 4 27 24 23 22 21 20 19 18

 3 12 11 10 11 14 15 16 17

 2 3 4 9 12 13 14 15 16

 1 8 5 8 9 12 13 14 15

 0 7 6 7 10 11 12 13 16S

G 8 9 10 11 12 13 38 39 40

 7 28 29 30 31 32 37 40 -1

 6 27 36 35 34 33 36 21 22

 5 26 25 24 25 34 35 20 21

 4 27 24 23 22 21 20 19 18

 3 12 11 10 11 14 15 16 17

 2 3 4 9 12 13 14 15 16

 1 8 5 8 9 12 13 14 15

 0 7 6 7 10 11 12 13 16S

G

Program 9.11: Shortest path algorithm in C

1 void build_path(int i, int j, int len)
2 { int k;
3
4 for (k = len-1; k>=0; k--)
5 { if (i>0 && !wall[i][j][0] && map[i-1][j] == k)
6 { i--; path[k] = 0; /* north */}
7 else
8 if (i<MAZESIZE-1 && !wall[i+1][j][0]
9 && map[i+1][j]==k)

10 { i++; path[k] = 2; /* south */}
11 else
12 if (j>0 && !wall[i][j][1] && map[i][j-1] == k)
13 { j--; path[k] = 3; /* east */}
14 else
15 if (j<MAZESIZE-1 && !wall[i][j+1][1]
16 && map[i][j+1] == k)
17 { j++; path[k] = 1; /* west */}
18 else LCDPrintf("ERROR");
19 }
20 }

Shortest Path

115

along the shortest path from start to finish (Program 9.12). If desired, we can
also extend this function to drive the return path back to the start, once the goal
has been reached.

After the robot has finished the maze exploration (see Figure 9.6, bottom),
the user can select the desired goal position and view the internal maze repre-
sentation, the distances from the flood-fill algorithm, the calculated shortest
path and the map of explored cells marked with an x (see Figure 9.15. top left
to bottom right). In this example we chose the goal position (4,4), the top right
maze square. Nodes with distances –1 were either not required for finding the
goal or were not reachable and therefore retain their initialization value. Figure
9.16 finally shows the robot driving along the shortest route to the goal.

Program 9.12: Path recreation algorithm in C

1 void drive_path(int len)
2 { int i;
3 for (i=0; i<len; i++) go_to(path[i]);
4 }

Figure 9.15: Internal representation, flood-fill, shortest path and nodes

Mazes

116

9

9.8 Tasks

Figure 9.16: Robot driving to the goal along the shortest route

• Combine the controlled driving of the follow-left program with recursive maze explo-
ration so that the robot will find the shortest path.

• Further improve driving control by using a PID sensor as well as incorporating orien-
tation control with position control. This should result in much smoother paths.

• Create a smaller sized robot that can drive diagonally at 45° through subsequent left/
right 90° turns and optimize its driving algorithm to take advantage of this.

117117

10
.

. .
NAVIGATION

n mobile robot navigation, we distinguish between navigation in known
environments, where we are given a map, and navigation in unknown
environments [Bräunl 2022]1. In this chapter, we want to explore algo-

rithms for each of these scenarios.

10.1 Navigation in Unknown Environments
The algorithm we want to look at is called DistBug and was developed by
[Kamon, Rivlin 1997]2. It is part of the larger family of Bug algorithms, which
have the nice proven property that they will find a path if one exists, or they
will report that no path exists (after performing a search). The not-so-nice
property is that this is a mathematical proof, so it only works for robots of zero
size (which we can fix with an offset) and with zero driving and sensing error
(which we cannot fix). This means that these algorithms have some robustness
issues and may not work perfectly in the real world, but they are definitely
worth exploring [Ng, Bräunl 2007]3.

As there is no map in this scenario, the robot will start with local (x,y)-coor-
dinates of (0,0) and an orientation of 0°. The (x,y)-goal coordinates are given
as a relative offset to the robot’s starting position, e.g. (1000,1000).

In the following, we present a simplified version of the DistBug algorithm:
1. Drive straight towards the goal.
2. If the goal is reached → finish with success!
3. If an obstacle is encountered, remember this position (hit position),

then start wall following around the obstacle (always keeping it on

1 T. Bräunl, Embedded Robotics – From Mobile Robots to Autonomous Vehicles with Rasp-
berry Pi and Arduino, 4th Ed., Springer Nature, Singapore, 2022

I

2 I. Kamon, E. Rivlin, Sensory-Based Motion Planning with Global Proofs, IEEE Transac-
tions on Robotics and Automation, vol. 13, no. 6, Dec. 1997, pp. 814–822 (9)

3 J. Ng, T. Bräunl, Performance Comparison of Bug Navigation Algorithms, Journal of Intel-
ligent and Robotic Systems, Springer-Verlag, no. 50, 2007, pp. 73-84 (12)

© Springer Nature Switzerland AG 2023

T. Bräunl, Mobile Robot Programming, https://doi.org/10.1007/978-3-031-32797-1_10

https://doi.org/10.1007/978-3-031-32797-1_10
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32797-1_10&domain=pdf

Navigation

118

10
the right side) while constantly calculating the minimum distance to
the goal. Continue this operation until either condition holds:
• If there is a clear path to the goal or the robot can advance a min-

imum distance closer to the goal → call this the leave position and
go to step 1.

• If the robot is back at the hit position → finish with failure! (no
possible path).

We have already worked with the Lidar sensor, which we need here to mea-
sure obstacle distances, and we have done wall following, which is an essential
component of this algorithm. In the following section, we will combine them
and present the DistBug implementation in several parts.

10.2 DistBug Algorithm
The following DistBug implementation is by Joel Frewin (UWA), with modi-
fications by the author. In the SIM script in Program 10.1, we start the robot at
(300,300) and put a colored marker for the goal position on the ground at
(4500,4500). The latter is for the viewer only – the robot gets its goal coordi-
nates as an offset from its starting position.

We need to include the goal coordinates relative to the robot’s starting posi-
tion (4500–300, 4500–300) in our program, as the robot has no other way of
knowing where the goal is (Program 10.2).

The first thing we do in the control loop is to collect all data. We update the
Lidar scan all around the robot, get the latest position and orientation data from

Program 10.1: DistBug environment SIM script

1 # World File
2 world obstacles.wld
3
4 settings VIS TRACE
5
6 # Robots
7 S4 300 300 0 distbug.x
8
9 # Objects position x y, color R G B

10 marker 4500 4500 0 255 0

Program 10.2: Defining relative goal position in C

1 #define GOALX (4500-300) // marker minus start offset
2 #define GOALY (4500-300) // (relative goal coord.)

DistBug Algorithm

119

the wheel encoders via VWGetPosition and then calculate the angle towards
the goal. For this, we use the math library function atan2 in Program 10.3,
which is a variation of the arcus tangent (arctan) function, using the two
parameters dy and dx instead of the quotient dy/dy. Function atan2 returns a
unique angle in the range [0, 2π], which we convert back to degrees [0°, 360°].
We then only need to build the difference between the goal angle and the
robot’s heading angle to find the goal heading from the robot’s current pose
(position and orientation).

Checking whether the robot has reached the goal is easy. We allow a devia-
tion of 50mm in x and y in Program 10.4.

Afterwards, we distinguish three states: DRIVING (starting state), ROTAT-
ING and FOLLOWING. Program 10.5 shows the code for DRIVING.

Program 10.3: Main loop reading Lidar data and calculating goal heading in C

1 while (1)
2 { LIDARGet(dists); // Read distances from Lidar
3 VWGetPosition(&x, &y, &phi);
4 LCDSetPrintf(0,0,"POS x=%5d y=%5d phi=%4d ", x,y,phi);
5 theta = atan2(GOALY-y, GOALX-x) * 180.0/M_PI;
6 if (theta > 180.0) theta -= 360.0;
7 diff = round(theta-phi);
8 LCDSetPrintf(1,0,"GOAL %5d %5d %6.2f diff=%4d ",
9 GOALX, GOALY, theta, diff);

Program 10.4: Checking for goal position within a certain margin in C

1 if (abs(GOALX - x) < 50 && abs(GOALY - y) < 50)
2 { LCDSetPrintf(3,0, "Goal found ");
3 VWSetSpeed(0, 0); // Stop robot
4 return 0; // Program finished
5 }

Program 10.5: State “driving” in C

1 switch (state)
2 { case DRIVING: // Drive towards the goal
3 if (dists[180]<400 || dists[150]<300 || dists[210]<300)
4 { VWSetSpeed(0, 0); // stop
5 ...
6 state = ROTATING;
7 } else if (abs(diff) > 1.0) VWSetSpeed(200, diff);
8 else VWSetSpeed(200, 0);
9 break;

Navigation

120

10
We check whether there is an obstacle in front to avoid a collision. Lidar

direction 180° is straight ahead (same as PSD_FRONT); directions 150° and
210° are 30° to either side. If there is an obstacle in this range, the robot will
stop and go into ROTATION mode (Program 10.6).

If there is no obstacle and the angle difference towards the goal is within 1°,
the robot will drive straight; otherwise, it will drive a curve.

Instead of doing a more complex wall-following operation, here we simply
rotate the robot 90° to the left of the obstacle (within 5° of error), and then
drive a small distance away from the obstacle. This behavior can be clearly
seen in the screenshots in Figure 10.1.

After that, the robot goes into FOLLOWING mode, where we need to check
whether the robot is back at the last hit point, which would mean that there is
no path to the goal and it needs to give up (Program 10.7). We use a counter to
ensure that the robot has moved significantly away from the hit point before it
can be recorded as a new position. This is one of the algorithm additions
required to make it work in a realistic robot setting in the presence of small
errors and noise.

For the leave condition (terminating wall-following behavior), we need to
calculate the values for the shortest distance to the goal so far (d_min) and the
free space in the goal direction (f). The leave condition is

d – f <= d_min – STEP
If this is the case, then the free space in the goal direction from the current

position (d) brings us closer towards the goal by a margin (STEP) than the

Program 10.6: State “rotating” in C

1 case ROTATING: // Rotate perpendicular to obstacle
2 diff = round(phi - perp);
3 if (abs(diff) > 5) VWSetSpeed(0, 50);
4 else { VWSetSpeed(0, 0);
5 ...
6 state = FOLLOWING;
7 }
8 break;

Program 10.7: State “following” in C

1 case FOLLOWING: // Follow along obstacle boundary
2 counter++;
3 if (counter>10 && abs(hit_x-x)<50 && abs(hit_y-y)<50)
4 { VWSetSpeed(0, 0);
5 LCDSetPrintf(3,0, "Goal unreachable ");
6 return 1; // finish with error
7 }

DistBug Algorithm

121

present best distance (d_min). This will terminate the object following (leave
point) and the algorithm will restart at step 1, driving directly towards the goal
(see Program 10.8).

The screenshots in Figure 10.1 and Figure 10.2 show the development of
the robot’s pathfinding when circumnavigating two obstacles.

Program 10.8: Calculating the leave condition in C

1 int dx = GOALX - x;
2 int dy = GOALY - y;
3 float d = sqrt(dx*dx + dy*dy);
4
5 // Update minimum distance
6 if (d < d_min) d_min = d;
7
8 // Calculate free space towards goal
9 int angle = 180 - (theta-phi);

10 if (angle<0) angle +=360;
11 int f = dists[angle];
12 LCDSetPrintf(2,0,"a=%d d=%f f=%d m=%f ", angle,d,f,d_min);
13
14 // Check leave condition
15 if (d - f <= d_min - STEP)
16 { VWSetSpeed(0, 0);
17 VWStraight(300, 100);
18 VWWait();
19
20 LCDSetPrintf(3,0, "Leaving obstacle ");
21 diff = round(theta - phi);
22 VWTurn(diff, 50);
23 VWWait();
24 state = DRIVING
25 }

Figure 10.1: DistBug search developing

Navigation

122

10

10.3 Navigation in Known Environments
If we already have a map of our robot’s environment, it would be a waste of
time using an algorithm like DistBug to find a path to the goal. Instead, we can
use the map to plan the shortest path ahead of time, so offline before we actu-
ally start driving. There are different methods of specifying an environment
map. Here, we use the simplest possible format, called an Occupancy Grid,
which is a binary image where each pixel represents a small patch of the envi-
ronment (e.g. 10cm × 10cm). If a pixel is true (black), it represents an obstacle;
if it is false (white), it represents free space. In Figure 10.3, we have put
together a few examples of such environment files.

Figure 10.2: Goal found in DistBug algorithm

Figure 10.3: Sample occupancy grids (black=obstacle, white=free)

Quadtrees

123

10.4 Quadtrees
The Quadtree algorithm takes the environment data and subdivides it into four
equal quadrants (labelled counterclockwise 1, 2, 3, 4), as shown in Figure 10.4.
Each of the quadrants can be either:

• completely free (good to drive through),
• completely blocked (cannot drive there), or
• a mix of free and blocked areas (need to be investigated further).

A tree structure can best represent this algorithm. In the example in Figure
10.4, we have quadrant 1 being completely free and quadrant 3 being com-
pletely blocked, while the other two are mixed.

Investigating the mixed quadrants further, we call the same algorithm recur-
sively for these nodes. Subdividing only nodes 2 and 4 will give us a more
refined tree structure as shown in Figure 10.5. This process is then repeated
until each node is completely free or completely blocked, or until we have
reached the maximum resolution level.

Once we have finished the subdivision, we mark all free-space centers as
nodes (see Figure 10.6). Some implementations also mark the corners and
some side points of the free-space squares as nodes, but we will use the sim-
pler version here.

We can easily calculate the coordinates for all these center points a through
e, then calculate the path lengths between all nodes. However, not all possible
links are actually valid paths; for example, paths c–e and b–e are not valid as
they would go through blocked areas, so we have to delete them. The distance
graph of the remaining paths in our example is shown in Figure 10.7, right.

Figure 10.4: Quadtree step 1: four quadrants

1
free

2 3 4
mix full mix

Figure 10.5: Quadtree step 2: further subdivision

Navigation

124

10

Assuming the robot is given its starting node and orientation as one of these
nodes (otherwise we need to solve the problem of localization) plus the goal
node position, we can then use a graph algorithm like Dijkstra’s Algorithm or
A* (A-Star) to find the shortest path [Bräunl 2022]4.

So, in summary, the full navigation algorithm requires a number of steps:
• Quadtree decomposition.
• Confirmation that each path is collision-free.
• Calculation of the length of each collision-free path.
• Application of the A* algorithm for the given start and goal nodes.
• Driving along the shortest path.

Note the driving problem has now been shifted from a low level (dealing
with actual positions) to a high level (working with nodes).

10.5 Quadtree Implementation
The main program will start the quadtree decomposition by calling the recur-
sive subroutine quad with the starting position (0,0) and the full size of the
map. For simplicity, we use square maps whose size is a power of two, such as

quad(0,0, 1024)

Figure 10.6: Quadtree step 3: free-space centers become nodes

Figure 10.7: Quadtree step 4: collision paths and constructed graph

abc

d

e

a

b c d e

abc

d

e

a

b

c e

d

8 8

55

11 11
14

16

4 T. Bräunl, Embedded Robotics – From Mobile Robots to Autonomous Vehicles with Rasp-
berry Pi and Arduino, 4th Ed., Springer Nature, Singapore, 2022

Quadtree Implementation

125

The recursive routine quad in Program 10.9 runs through all the pixels of
the given square section, starting at input parameters (x, y) and running in both
directions for the given size until (x+size, y+size). The algorithm checks
whether every single pixel in this area is free (false) or whether every single
pixel in this area is occupied (true), and then sets the overall variables allFree
and allOcc accordingly.

If either allFree or allOcc is true, then the subdivision is finished and the
procedure quad terminates. Only for the case allFree, we need to record this
position as a free node, e.g., by printing (as in the example) or drawing it; or
even better, by entering it into an array for subsequent processing.

If neither allFree nor allOcc are true, then the area is mixed and we have to
further subdivide it. Using s2 = size/2 as an abbreviation, we split the area (x,y)
into four quadrants of half the side length, starting at

(x, y), (x+s2, y), (x, y+s2), (x+s2, y+s2) .

This routine will print all free areas found.
free 0 0 (32)
free 32 0 (32)
free 0 32 (4)
free 4 32 (4)
free 0 36 (1)
free 1 36 (1)
free 2 36 (2)
free 4 36 (2)
...

Of course, it is nicer to display them graphically on the LCD using
LCDArea, as we have done in Figure 10.8, right. To declutter the image, we
only display free squares with a minimum size of 16×16 pixels.

In order to generate paths, we need to store the center points of the free
squares in an array for further processing. For generating all possible paths, we

Program 10.9: Quadtree decomposition in C

1 void quad(int x, int y, int size) // start pos + size
2 { bool allFree=true, allOcc = true;
3 for (int i=x; i<x+size; i++)
4 for (int j=y; j<y+size; j++)
5 if (field[i][j]) allFree=false; //at least 1 occ.
6 else allOcc=false; //at least 1 free
7 if (allFree) printf("free %d %d (%d)\n", x, y, size);
8 else if (!allOcc && (size>1))
9 { int s2 = size/2;

10 quad(x, y, s2);
11 quad(x+s2, y, s2);
12 quad(x, y+s2, s2);
13 quad(x+s2, y+s2, s2);
14 }
15 }

Navigation

126

10

just draw a line from the center of every free square to every other center (see
red lines in Figure 10.9).

As can be seen, some of the paths between free squares intersect “forbid-
den” occupied areas. We have to eliminate these before we can apply a short-
est path algorithm. For this, it helps to look at the general case of how a line
segment can intersect a square, see Figure 10.10.

The intersection algorithm given by [Alejo 2008]5 is as follows:
1. Are all four corners of box RSTU on the same side of line segment AB?

If yes, we are done → no intersection!
For each corner point P ∈{R, S, T, U} calculate the line equation for
the line going through points A and B:

Figure 10.8: Sample environment (left) and its quadtree decomposition (right)

Figure 10.9: Quadtree decomposition with all paths
(some paths are intersecting occupied areas)

5 Alejo, How to test if a line segment intersects an axis-aligned rectangle in 2D, 2008, https:/
/stackoverflow.com/questions/99353/how-to-test-if-a-line-segment-intersects-an-axis-
aligned-rectangle-in-2d

https://stackoverflow.com/questions/99353/how-to-test-if-a-line-segment-intersects-an-axisaligned-rectangle-in-2d
https://stackoverflow.com/questions/99353/how-to-test-if-a-line-segment-intersects-an-axisaligned-rectangle-in-2d
https://stackoverflow.com/questions/99353/how-to-test-if-a-line-segment-intersects-an-axisaligned-rectangle-in-2d

Quadtree Implementation

127

F(P) = (By–Ay)·Px + (Ax–Bx)·Py + (Bx·Ay – Ax·By)
• F(P) = 0 means point P is on the line AB
• F(P) > 0 means point P is above line AB
• F(P) < 0 means point P is below line AB

2. Are all four Fs positive or are all four Fs negative ?
If yes, we are done → no intersection!
If not, project the AB line endpoints onto the x-axis and check if the line
shadow intersects the square shadow; then do the same with the y-axis.

• If (Ax > Ux and Bx > Ux) then there is no intersection
• If (Ax < Rx and Bx < Rx) then there is no intersection
• If (Ay > Uy and By > Uy) then there is no intersection
• If (Ay < Ry and By < Ry) then there is no intersection
• Else there is an intersection

Applying this test for each generated line segment (linking each free cube
center with each of the others) will eliminate a number of line segments. In the
graph shown in Figure 10.11, we have drawn the collision-free paths in blue,
while the intersecting paths are shown in red.

The actual distance calculation is simple, as we have the center coordinates
for all free squares. The distance between two square centers is given by the
Euclidean formula

distance = √[(x2–x1)2 + (y2–y1)2] .
So, the only remaining steps for driving the shortest distance are applying

the A* algorithm and actually executing the driving commands.
The sample environments and map files in Figure 10.12 and in previous fig-

ures of this chapter have been created by Joel Frewin at the UWA Robotics &
Automation Lab.

Figure 10.10: Line-box intersection algorithm: check if all corners are on same
side of line (bottom left) and check x,y-shadows for overlap (right)

Navigation

128

10

Figure 10.11: Quadtree decomposition with non-intersecting paths

Figure 10.12: More environments with quadtree decompositions and paths

Shortest Path Algorithm

129

10.6 Shortest Path Algorithm
To find the shortest path in a given distance graph, we can use either Dijkstra’s
algorithm [Dijkstra 1959]6 or the A* (A-star) algorithm [Hart, Nilsson, Rap-
hael 1968]7. Dijkstra finds the shortest path from a start node to all other
nodes, while A* only finds the shortest path from a specific start node to a spe-
cific goal node. The A* algorithm can only be used if the minimum distance
between two nodes (usually the Euclidean distance or “air distance”) is known.
This additional information makes the A* algorithm a lot more efficient in
most practical applications.

In the A* example in Figure 10.13, we have five nodes, including the start
and goal nodes. Actual distances between the nodes are given along the edges
that link them, and we also have the minimum distance to the goal from each
node written inside each box (this serves as a lower bound, which is required
by this algorithm). For example, driving from the start node to node a takes 10
meters and we know that the start node itself is at least seven meters from the
goal.

The algorithm explores all choices from the start node and gives them a dis-
tance score. So we have the following possible paths:

• S → a score: 10 (path length) + 1 (min. remainder from a) = 11
• S → c score: 5 + 3 = 8
• S → d score: 9 + 5 = 14

Sorting these three paths gives us
• S → c score: 8
• S → a score:11
• S → d score:14

6 E. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik,
Springer-Verlag, Heidelberg, vol. 1, pp. 269-271 (3), 1959

7 P. Hart, N. Nilsson, B. Raphael, A Formal Basis for the Heuristic Determination of Mini-
mum Cost Paths, IEEE Transactions on Systems Science and Cybernetics, vol. SSC-4, no.
2, 1968, pp. 100-107 (8)

Figure 10.13: Distance graph in initial state

Navigation

130

10

Being a best first search algorithm, only the shortest path identified so far
(S→c shown in red in Figure 10.14) is explored further. Expanding S→c in the
next iteration of the A* algorithm gives us three new paths:

• S → c → a score: 5 + 3 + 1 = 9
• S → c → b score: 5 + 9 + 0 = 14
• S → c → d score: 5 + 2 + 5 = 12

Sorting all old and new paths identified so far results in this list:
• S → c → a score: 9
• S → a score: 11
• S → c → d score: 12
• S → c → b score: 14
• S → d score: 14

The shortest path S→c→a is highlighted in red in Figure 10.15 and will be
expanded further. There is only one possible path extension:

• S → c → a → Goal score: 9

As this extended path has reached the goal and still has the lowest recorded
score, the A* algorithm terminates. We have found the shortest possible path!

z

Figure 10.14: Distance graph after selecting sub-path Start–c

Figure 10.15: Distance graph after selecting sub-path Start–c–a

Tasks

131

10.7 Tasks

• Implement the Quadtree decomposition.
• Implement drivable path detection.
• Implement path length calculation.
• Implement the A* algorithm for finding the shortest distance.
• Implement the driving algorithm to combine all of the above.

133133

11
.

. .
ROBOT VISION

ision is quite likely the most important sensor in robotics. Although it
requires a lot more computing power and algorithm development
than a Lidar sensor in order to extract environment data, it has the

great advantage that it is so much cheaper and also provides us with color and
intensity data instead of just a distance value.

11.1 Camera and Screen Functions
Each of our real and simulated robots is equipped with a digital camera. For
the real robots, this is the Raspberry Pi camera; for the simulated robots it is a
virtual camera sensor with similar characteristics in aperture and resolution.

The first task will be to continuously read an image from the camera and
then display it unchanged on the LCD. In order to do this, we need to initialize
the camera to tell it which image resolution it should use. This initialization
also automatically sets the image display size for the LCD functions and it sets
the image size for the image processing library functions, which we will look
at later. The choices for camera resolution are:

• QQVGA 160 × 120 pixels
• QVGA 320 × 240 pixels
• VGA 640 × 480 pixels
• CAM1MP 1,296 × 730 pixels
• CAMHD 1,920 × 1,080 pixels
• CAM5MP 2,592 × 1,944 pixels

As a first step, it is probably a good idea to select a moderate image size.
We choose QVGA, as this image resolution still fits completely onto the on-
board LCD we are using.

We also filled up the scenery with some objects from the simulator’s drop
down menu. Figure 11.1 shows the robot environment with the corresponding
camera image from the robot’s point of view displayed on its LCD.

V

© Springer Nature Switzerland AG 2023

T. Bräunl, Mobile Robot Programming, https://doi.org/10.1007/978-3-031-32797-1_11

https://doi.org/10.1007/978-3-031-32797-1_11
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32797-1_11&domain=pdf

Robot Vision

134

11

We already had a look at programs to read and display a camera image at
the beginning of this book, but here are the minimal versions. First, we present
an endless loop Python program (Program 11.1), next is the equivalent in C
(Program 11.2).

Figure 11.1: Robot with objects (left) and local camera view (right)

Program 11.1: Minimal camera program in Python

1 from eye import *
2
3 CAMInit(QVGA)
4 while True:
5 img = CAMGet()
6 LCDImage(img)

Program 11.2: Minimal camera program in C

1 #include "eyebot.h"
2
3 int main()
4 { BYTE img[QVGA_SIZE];
5
6 CAMInit(QVGA);
7 while (1)
8 { CAMGet(img);
9 LCDImage(img);

10 }
11 }

Edge Detection

135

11.2 Edge Detection
After reading an image, we want to extract some meaningful information from
the image data. We can do this by:

• Programming routines directly in Python, C or C++.
• Using the small RoBIOS image processing library.
• Using the comprehensive OpenCV library or some other library [Kae-

hler, Bradski 2017]1.
Laplace template As an example, we use edge detection [Bräunl et al. 2001]2, which tries to

find the outlines of objects (and shadows) in an image by finding grayscale
discontinuities. The simplest to implement (but not the best in quality) is the
Laplace function shown on the left, which takes a grayscale image as input.
For every pixel, the edge value is calculated as four times its grayscale value
minus the four neighboring pixel values (up, down, left, right). So, in a uni-
form section of an image, all five values will be similar and the function value
will be close to zero. However, if the pixel is at the border between a darker
and a brighter area, the function value will be a high positive or negative num-
ber – indicating an edge.

Note, that in most grayscale images, each pixel is given as a byte value, so
this gives us a value range of [0, 255]. In this scheme, 0 means black, 255
means white and all other values are shades of gray.

In the sample image in Figure 11.2 we assume a bright upper part and a
dark lower part. Going from pixel to pixel over the whole image lets us see the
different scenarios. If all of the pixels in the template are bright (top left filter
placement) or all of them are dark (bottom right), then the Laplace filter output
value will be very low. However, if some template pixels are bright and some
are dark, then we will get a high positive or a high negative value depending
on whether the current pixel is brighter than its surroundings or darker. For the

1 A. Kaehler, G. Bradski, Learning OpenCV 3: Computer Vision in C++ with the OpenCV
Library, O’Reilly, 2017

2 T. Bräunl, S. Feyrer, W. Rapf, M. Reinhardt, Parallel Image Processing, Springer Verlag,
Heidelberg Berlin, 2001

Figure 11.2: Sample image with some Laplace template locations

Robot Vision

136

11
three sample areas in Figure 11.2 we calculate the function output values in a
simplified environment as follows:

• top left: 4 · 255 –255 –255 –255 –255 = 0
• middle: 4 · 255 –255 –0 –255 –0 = 510
• bottom right: 4 · 0 –0 –0 –0 –0 = 0

A high absolute value indicates an edge (transition from dark to bright area
or vice versa); a low absolute value indicates no edge (uniform brightness
area).

The C function in Program 11.3 is mainly a loop through all pixels, apply-
ing the Laplace template. The loop does not run over the full range [0,
width*height]. Instead, we start at width and stop at width*(height–1) as we
have to avoid any access outside of the array boundaries.

If the current pixel is referenced by i, then the pixel at the left will be at
position i–1 and the one to the right at i+1; the pixel above will be at position
i–width and the one below at i+width. Since the subtraction of two byte values
[0, 255] can easily result in an integer outside these boundaries, we use the
absolute function followed by a test for constant 255 to ensure that each result
value will be in the range [0, 255].

We did not calculate the output values that are left out by the for-loop (first
and last row), so these values should be set to zero (black). Also, note that we

Program 11.3: Laplace filter programmed without library functions in C

1 #include "eyebot.h"
2
3 void Laplace(BYTE gray_in[], BYTE gray_out[])
4 { int i, delta;
5
6 for (i = IP_WIDTH; i < (IP_HEIGHT-1)*IP_WIDTH; i++)
7 { delta = abs(4 * gray_in[i]
8 -gray_in[i-1] - gray_in[i+1]
9 -gray_in[i-IP_WIDTH] - gray_in[i+IP_WIDTH]);

10 if (delta > 255) delta = 255;
11 gray_out[i] = (BYTE) delta;
12 }
13 }
14
15 int main()
16 { BYTE img[QVGA_PIXELS], lap[QVGA_PIXELS];
17
18 CAMInit(QVGA);
19 while (1)
20 { CAMGetGray(img);
21 Laplace(img, lap);
22 LCDImageGray(lap);
23 }
24 }

Edge Detection

137

use a single loop and do not take the row format into account. So, the Laplace
filter for the rightmost pixel in a row will also use the leftmost pixel of the next
row in its calculations. Because of this, we should disregard a 1-pixel wide
border around the resulting image. The output in Figure 11.3 now gives us the
object outlines in white on a black background, as expected.

Using the built-in IPLaplace function makes life considerably simpler and
the output will be identical. The following two programs show the implemen-
tation in Python (Program 11.4) and in C (Program 11.5). The Python solution
is, as always, more compact and follows a slightly different parameter syntax.
We return image values as a result in Python, for example

edge = IPLaplace(gray)

while we use them as a second (output) parameter in C
IPLaplace(img, edge);

A nice extension is to use the Laplace result as a color overlay on the origi-
nal gray image. Function IPOverlayGray adds the second gray image over the
first one, using the color given (here RED). Since the resulting Laplace output
lap is not just black and white pixels, there are many gray values in between,
we need to add a threshold function as an intermediate step. This weeds out all
the “weak edges” (in this case a value less than 50). Program 11.6 contains the
complete code and Figure 11.4 shows the output of the program.

The same application is shown in Python in Program 11.7. The complete
list of the RoBIOS image processing functions is shown in Figure 11.5. This is
only a small number of functions, but they implement the most frequently used
features.

Figure 11.3: Laplace filter output

Program 11.4: Laplace filter program using RoBIOS library in Python

1 from eye import *
2
3 CAMInit(QVGA)
4 while True:
5 gray = CAMGetGray()
6 edge = IPLaplace(gray)
7 LCDImageGray(edge)

Robot Vision

138

11
Program 11.5: Laplace filter program using RoBIOS library in C

1 #include "eyebot.h"
2
3 int main()
4 { BYTE img[QVGA_PIXELS], edge[QVGA_PIXELS];
5
6 CAMInit(QVGA);
7 while (1)
8 { CAMGetGray(img);
9 IPLaplace(img, edge);

10 LCDImageGray(edge);
11 }
12 }

Program 11.6: Laplace filter with result overlaid onto input image in C

1 #include "eyebot.h"
2
3 void Threshold(BYTE gray[])
4 { int i;
5 for (i=0; i<QVGA_PIXELS; i++)
6 gray[i] = (gray[i] > 50);
7 }
8
9 int main()

10 { BYTE img[QVGA_PIXELS], lap[QVGA_PIXELS], col[QVGA_SIZE];
11
12 CAMInit(QVGA);
13 while (1)
14 { CAMGetGray(img);
15 IPLaplace(img, lap);
16 Threshold(lap);
17 IPOverlayGray(img, lap, RED, col);
18 LCDImage(col);
19 }
20 }

Figure 11.4: Laplace edges in red overlaid onto original image

OpenCV

139

11.3 OpenCV
Starting as an Intel Research project in 1999, OpenCV3 is today one of the
most frequently used image processing libraries. It has bindings for Python,
C++ and Java, and supports advanced AI tools such as TensorFlow and Caffe.

Luckily, OpenCV uses the same file format as EyeBot/EyeSim/RoBIOS for
color and grayscale images. We only need the conversion function frame to

Program 11.7: Laplace filter with result overlaid onto input image in Python

1 from eye import *
2
3 def Threshold(gray):
4 for i in range(0, QVGA_PIXELS):
5 if (gray[i] > 50):
6 gray[i]=255
7 else:
8 gray[i]=0
9

10 CAMInit(QVGA)
11 while True:
12 gray = CAMGetGray()
13 edge = IPLaplace(gray)
14 Threshold(edge)
15 col = IPOverlayGray(gray, edge, RED)
16 LCDImage(col)

Figure 11.5: Image processing library functions

int IPSetSize(int resolution); // Set IP resolution
int IPReadFile(char *filename, BYTE* img); // Read PNM file
int IPWriteFile(char *filename, BYTE* img); // Write color file
int IPWriteFileGray(char *filename, BYTE* gray); // Write gray file
void IPLaplace(BYTE* grayIn, BYTE* grayOut); // Laplace edges
void IPSobel(BYTE* grayIn, BYTE* grayOut); // Sobel edge
void IPCol2Gray(BYTE* imgIn, BYTE* grayOut); // color to gray
void IPGray2Col(BYTE* imgIn, BYTE* colOut); // gray to color
void IPRGB2Col (BYTE* r, BYTE* g, BYTE* b, BYTE* imgOut); // 3*gray to col
void IPCol2HSI (BYTE* img, BYTE* h, BYTE* s, BYTE* i); // RGB to HSI
void IPOverlay(BYTE* c1, BYTE* c2, BYTE* cOut); // Overlay col
void IPOverlayGray(BYTE* g1, BYTE* g2, COLOR col, BYTE* cOut); // Ov. gray
COLOR IPPRGB2Col(BYTE r, BYTE g, BYTE b); // RGB to color
void IPPCol2RGB(COLOR col, BYTE* r, BYTE* g, BYTE* b); // color to RGB
void IPPCol2HSI(COLOR c, BYTE* h, BYTE* s, BYTE* i); // RGB to HSI
BYTE IPPRGB2Hue(BYTE r, BYTE g, BYTE b); // RGB to hue
void IPPRGB2HSI(BYTE r, BYTE g, BYTE b, BYTE* h, BYTE* s, BYTE* i); // hue

3 OpenCV weblink, https://opencv.org

https://opencv.org

Robot Vision

140

11
transfer an image across, as OpenCV stores additional information, such as
width and height, together with the image data in one structure. Displaying an
OpenCV image with a RoBIOS function can then be done by just accessing the
raw data with myimage.data. Program 11.8 shows an example using OpenCV
functions in C++.

The Canny edge detector is a more complex filter and usually gives better
results than the simple Laplace function we implemented before (see Figure
11.6).

11.4 Color Detection
Detecting objects by color is quite simple, provided that only the desired
object has the specified color in an image. In comparison, a detection by shape
is a lot more complex and requires some mathematical background. In this sec-
tion, we want to detect a red ball as an example.

Program 11.8: Canny edge detection using OpenCV library functions in C++

1 #include "opencv2/highgui/highgui.hpp"
2 #include "opencv2/imgproc/imgproc.hpp"
3 #include "eyebot++.h"
4 using namespace cv;
5
6 int main()
7 { QVGAcol img;
8 Mat edges;
9

10 CAMInit(QVGA);
11 while(1)
12 { CAMGet(img); // Get image
13 Mat frame(240, 320, CV_8UC3, img); // OpenCV conv.
14 cvtColor(frame, edges, COLOR_RGB2GRAY); // RGB-->GRAY
15 GaussianBlur(edges, edges, Size(7, 7), 1.5, 1.5);
16 Canny(edges, edges, 50, 100, 3); // Canny edge
17 LCDImageGray(edges.data); // Display result
18 }
19 }

Figure 11.6: Canny edge detection output

Color Detection

141

Most image sensors represent pixels as 3-byte values in RGB format (red,
green, blue). So, black is (0,0,0), white is (255,255,255) and “full” red is
(255,0,0). Values with three identical components, such as (50,50,50), are
shades of gray, while colors with different components are shades of the pre-
dominant color.

As there is always some noise in an image, we cannot simply check
whether a pixel is red, by asking

if (r==255 && g==0 && b==0)
And as ambient lighting changes all the time, we cannot use this more for-

giving relation either
if (r>200 && g<50 && b<50)

Imagine, for the sake of argument, that our “red” pixel in a sunny outdoor
scenario has an RGB value of

(210, 20, 10) .
If now a cloud covers the sun and the ambient lighting goes down by 50%,

then the same pixel will suddenly have the RGB value of
(105, 10, 5) .

All component values have been halved, so a simple comparison will not
work. The solution for this problem is to transfer RGB values to another color
space, such as HSI (hue, saturation, intensity), see [Bräunl et al. 2001]4. In this
format:

• hue [0, 255] specifies the color value as a position on a
circular color rainbow.

• saturation [0, 255] specifies the color strength – the lower the
saturation, the higher the white component.

• intensity [0, 255] specifies the overall brightness – the lower the
intensity, the higher the black component.

In HSI, white is (*,0,255) and black is (*,*,0). Grayscales are (*,0,g), where
g varies in range 0 (black) to 255 (white). The asterisk “*” is a “don’t care
term” and stands for any arbitrary value.

Conversion from RGB to HSI is trivial for S and I but requires trigonomet-
ric functions for H, which is the component we are most interested in. The fol-
lowing formulas are adapted from [Hearn, Baker, Carithers 2010]5:

• I = (R+G*B) / 3
• S = 255 – min(R,G,B) / I
• H = cos-1[0.5*(R-G + R-B) / √((R-G)2 + (R–B)*(G–B))]

We usually use a simplified approximation formula for calculating the hue
and we provide the whole transformation as a RoBIOS function IPCol2HSI,
which makes the transformation a lot easier. As the hue is only a single-byte
value, we can now convert an RGB color image to a hue image, which looks
like a grayscale image with only one byte per pixel.

4 T. Bräunl, S. Feyrer, W. Rapf, M. Reinhardt, Parallel Image Processing, Springer Verlag,
Heidelberg Berlin, 2001

5 D. Hearn, P. Baker, W. Carithers, Computer Graphics with Open GL, 4th Ed., Pearson, 2010

Robot Vision

142

11

If intensity or saturation are too low, then it will be impossible to assign a
proper color hue. You can notice this when using your digital camera in low
light environments, when you suddenly get incorrect stray color pixels. We
labeled these values with 255, meaning “no hue” and will exclude them from
subsequent processing.

As can be seen from the sample image in Figure 11.7, each RGB value has
now been transferred into a hue value. Values around 60 represent red, which
is the color we want to detect in this example. Therefore, the next step will be
to specify a hue range for the detection process, e.g., we are looking for a hue
in the range [55, 65]. Every hue pixel in this value range will become true (1);
every pixel outside this range becomes false (0). This gives us the binary
matching image in Figure 11.86.

We can already see the 1s as a cluster or blob pattern, but we still need to
find an algorithmic method to determine the center of our colored object. A
very simple and effective method is creating a histogram over all rows and a
histogram over all columns. This sounds a lot more complex than it actually is.
All we have to do is to add up all the values for each column of the hue-match
image and then do the same for each row. As can be seen in the example, for
the first row we get

0+1+1+1+0+0+0+0 = 3
and for the first column we get

0+0+0+0+0+0 = 0 .

Figure 11.7: RGB color image (left) and hue image (right)

90

60100

64

6159

60

8099

110

8099

60 62 30

82

54 32

8078

33

35

58 61 31

30

64 29

8233

30

31

255

255

255255

255255

255 31

6330

60 28

3330

29

32

6 Note that the hue range could extend to either side of 0, e.g., [250, 5]. This needs special
consideration and also needs to leave out our no-hue value of 255.

Figure 11.8: Binary hue match image

Color Detection

143

We enter these values and those for all remaining rows and columns in an
additional vector (one-dimensional array) as shown in Figure 11.9.

Now we are almost there. We know in which rows and columns there are a
lot of our desired object pixels (high values) and in which there are few or no
matching pixels at all (low or zero values). Since the desired object is a round
ball, we can find its center by just determining the maximum value of the line
and column histogram vector. In the example in Figure 11.9, the maximum
value for the row histogram is four and occurs in row two (counting from the
top, starting with index zero). The maximum value of the column histogram is
three and this value occurs several times – we just take the first occurrence,
which is column one (second from left). Therefore, our calculated object cen-
ter is at (x,y)-position (1,2) counted from the top-left and starting at (0,0).

Looking at the gray cluster of 1-values in the hue-match image above (as
well as in the original color image), one would probably have placed the object
center at (x,y)-position (2,1) instead, but remember: we are only one pixel off
the “correct” solution, which can always happen in image processing, and we
are just looking at a very small sample image of 6×8 pixels. Detection will be
better in a full-size image as we will show shortly.

In order to get there, we first implement the hue matching and histogram
generation in C or Python. Here, we only generate the column histogram as a
simplification. After all, if we want a robot to drive towards an object, we only
need to know its x-position and this is what the column histogram will give us.

Program 11.9 runs a loop over all columns (for-x) and a nested loop over all
rows (for-y). If the difference between the hue of the current pixel and the
desired hue is below a threshold, then the histogram for the current column is
incremented (hist[x]++).

The remaining step is to find the maximum in this histogram, which is quite
simple. In Program 11.10 we run a single loop (for-i) over all elements of the
histogram and remember the highest value. Note that at the end of this func-
tion, we do not return val, the highest value found, but instead we return its
position pos, as we are only interested in the location of the colored object.

Figure 11.9: Binary hue match image with column and row histograms

Robot Vision

144

11

The returned value pos will be in the range of [0, CAMWIDTH–1], which
can be easily translated into a steering command for the robot. Value 0 should
steer maximum left, CAMWIDTH/2 straight ahead and CAMWIDTH –1 to the
maximum right. Note that a result of 0 could also mean that no matching pixels
have been found. In this case, the robot should execute another search com-
mand, e.g., rotating on the spot or driving straight until an obstacle is encoun-
tered.

We do not even have to be that specific regarding the steering angle. In
practice, a simple three-way selection statement is all that is required. Turn
left, if the object center is in the left third of the image, turn right if it is in the
right third, otherwise drive straight (see Program 11.11).

Program 11.9: Histogram generation in C

1 void GenHist(VGAcol img, int hue, line hist, int thres)
2 { int x,y, pos, diff;
3 for (x=0; x<CAMWIDTH; x++)
4 { hist[x] = 0;
5 for (y=0; y<CAMHEIGHT; y++)
6 { pos = y*CAMWIDTH + x;
7 diff = abs(img[pos] – hue);
8 if (((diff < thres) || (255–diff < thres))
9 && (img[pos] != NO_HUE))

10 hist[x]++;
11 }
12 }
13 }

Program 11.10: Finding maximum in histogram in C

1 int FindMax(line hist)
2 { int i, pos=0, val=hist[0]; // init
3 for (i=1; i<CAMWIDTH; i++)
4 if (hist[i] > val)
5 { pos = i;
6 val = hist[i];
7 }
8 return pos;
9 }

Program 11.11: Driving robot according to histogram output in C

1 if (pos < CAMWIDTH/3) VWTurn(10, 30); // left
2 else { if (pos > 2*CAMWIDTH/3) VWTurn(-10, 30); // ri.
3 else VWStraight(50, 100); // straight
4 }

Color Detection

145

The execution result can be seen in the image sequence in Figure 11.10.
Since we run the image detection and drive commands in a continuous loop,
the robot will continuously correct its driving angle and will hone in on the red
target. We used a can instead of a ball in this example and the white text on the
red object clearly affects the histogram, as can be seen in the screenshots.
However, the algorithm is still robust enough to let the robot find the red can.

Figure 11.10: Robot driving towards red object with histogram over image

Robot Vision

146

11

11.5 Motion Detection
Motion detection sounds complicated, but as we will show here, it is really
very simple; in fact, it is even simpler than color detection. We want a robot to
detect any motion in its visual field. It should then either rotate its camera (if
mounted on a servo) or orientate itself towards the center of the motion. Driv-
ing towards detected motion while sensing can be tricky, however, as when the
robot is in motion, every pixel in its visual field seems to be moving towards
an outer edge (check out the opening sequence from Star Trek).

Anyway, let us just try to detect motion for a stationary observer robot. The
way we do this is to take two camera images, one shortly after the other, and
then compare them by subtracting one image from another, pixel by pixel. We
use the absolute value of the difference, as we are only interested in pixels that
changed between the first and the second image. We do not distinguish
whether a pixel gets brighter or darker.

In the diagram in Figure 11.11, we demonstrate this principle. In the first
case, there has been no motion between the first and second image; therefore,
we have – except for noise – two largely identical images at times t1 and t2.
Subtracting these image matrices from each other gives us an image resem-
bling the zero matrix.

However, if there was some motion in the image like the gray block shifting
from left to right in the second example, we will get one or more areas in the
difference image with a high value. If we then calculate the average difference
value over all pixels and compare it with a fixed threshold, we can either say
“yes, there was motion” or “no, there was no motion” in our visual field.

The functions for image_diff and avg are mostly self-explanatory and are
shown in Python (Program 11.12) and C (Program 11.13). Note that for the
array declaration in Python, we have to specify the values of type c_byte for
compatibility reasons, as the EyeBot Python library functions ultimately call
the C library.

Figure 11.11: Motion detection by subtracting images as 2D matrices

Motion Detection

147

The main function in Program 11.14 for Python (and Program 11.15 for C)
first reads two images at 100ms apart, then calls image_diff, which is displayed
on the screen, followed by avg. We print the average difference value to the
screen and – if it exceeds a threshold – raise an alarm.

In the execution example, we let one robot continuously rotate on the spot
between two cans (by using VWSetSpeed(0,100) followed by an endless while-
loop) while the analyzing robot is watching the scene using the code discussed
before. The SIM script file is given in Program 11.16.

As can be seen from the screenshot in Figure 11.12, the analyzing robot
clearly sees the motion of the other moving robot, but none of the stationary
surrounding objects show up in the difference image.

In a second step, we can use a similar technique as before for the color
detection and run the same algorithm three times, each time on one third of the
input image pair (left, center, right). This will give us a true/false motion result
for each of the three sectors and can easily select the sector (if any) in which

Program 11.12: Calculating the image difference in Python

1 from eye import *
2 from ctypes import *
3
4 def image_diff(i1, i2):
5 diff = (c_byte * QVGA_PIXELS)()
6 for i in range(QVGA_PIXELS):
7 diff[i] = abs(i1[i] - i2[i])
8 return diff

9
10 def avg(d):
11 sum=0
12 for i in range(QVGA_PIXELS):
13 sum += d[i]
14 return int(sum/QVGA_PIXELS)

Program 11.13: Calculating the image difference in C

1 void image_diff(BYTE i1[SIZE], BYTE i2[SIZE],
2 BYTE d[SIZE])
3 { for (int i=0; i<SIZE; i++)
4 d[i] = abs(i1[i] - i2[i]);
5 }

6
7 int avg(BYTE d[SIZE])
8 { int i, sum=0;
9 for (i=0; i<SIZE; i++)

10 sum += d[i];
11 return sum / SIZE;
12 }

Robot Vision

148

11
Program 11.14: Main program for motion detection in Python

1 def main():
2 CAMInit(RES)
3
4 while True:
5 image1 = CAMGetGray()
6 OSWait(100) # Wait 0.1s
7 image2 = CAMGetGray()
8 diff = image_diff(image1, image2)
9 LCDImageGray(diff)

10 avg_diff = avg(diff)
11 LCDSetPrintf(0,50, "Avg = %3d", avg_diff)
12 if (avg_diff > 15): # Alarm threshold
13 LCDSetPrintf(2,50, "ALARM!!!")
14 else:
15 LCDSetPrintf(2,50, " ") # clear text

Program 11.15: Main program for motion detection in C

1 int main()
2 { BYTE image1[SIZE], image2[SIZE], diff[SIZE];
3 int avg_diff, delay;
4
5 CAMInit(RES);
6 while (1)
7 { CAMGetGray(image1);
8 OSWait(100); // Wait 0.1s
9 CAMGetGray(image2);

10 image_diff(image1, image2, diff);
11 LCDImageGray(diff);
12 avg_diff = avg(diff);
13 LCDSetPrintf(0,50, "Avg = %3d", avg_diff);
14 if (avg_diff > 15) LCDSetPrintf(2,50, "ALARM!!!");
15 }
16 }

Program 11.16: Motion detection SIM script

1 # Environment
2 world ../../worlds/small/Soccer1998.wld
3 can 300 600 0
4 can 300 1000 45
5
6 # Robot position (x, y, phi) and executable
7 S4 300 800 0 turn.x
8 S4 800 800 180 motion.x

Tasks

149

motion has occurred (see Figure 11.13). If there was motion in more than one
sector, we can go back to the average distance values before thresholding and
compare them to find out which sector has the highest motion activity.

11.6 Tasks

Figure 11.12: Sample scenario with rotating robot and stationary cans (left)
and calculated motion image (right)

Figure 11.13: Motion in corner of visual field (left) and 3-way decompo-
sition of image (right)

• Write a program that starts from one environment corner, searches for a red can, drives
towards it, surrounds it and then pushes it back to its home position.

• Extend the previous program by a function that teaches a desired color hue at a button
press. That way, objects of any color can be searched.

• Try to combine motion detection with driving towards the motion location. This re-
quires determining and subtracting the image differences caused by the robot’s egomo-
tion.

151151

12
.

. .
LEARNING ROBOTS

e would now like to introduce a simple articulated walking robot
by the name of Starman, which was first described by Ngo and
Marks in 1994 [Fukunaga et al. 1994] 1.

Starman, as described in the original report, was only a virtual 2D robot, but
it was a great tool for experimenting with learning algorithms. As it turns out,
moving forward is not that easy, not even for a circular 2D robot with five
limbs that cannot fall over.

We went a few steps further, to bring Starman into the real 3D world. We
built a physical Starman robot with powerful servos for each of its five legs
around a cylindrical body – and then generated its virtual counterpart in Eye-
Sim. Each limb can be moved individually via a servo command SERVOSet.

1 A. Fukunaga, L. Hsu, P. Reiss, A. Shuman, J. Christensen, J. Marks, J. Ngo, Motion-Syn-
thesis Techniques for 2D Articulated Figures, Harvard Computer Science Group Technical
Report TR-05-94, 1994

W

Figure 12.1: Real Starman robot versus simulated Starman

© Springer Nature Switzerland AG 2023

T. Bräunl, Mobile Robot Programming, https://doi.org/10.1007/978-3-031-32797-1_12

https://doi.org/10.1007/978-3-031-32797-1_12
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32797-1_12&domain=pdf

Learning Robots

152

12

12.1 Starman
The screenshot in Figure 12.1 shows Starman in its initial neutral position. All
limbs are in their middle position – 128 of the servo movement range [0, 255].
Moving individual limbs will be our first step (see Figure 12.2). To do this, we
place Starman into our default box environment (Program 12.1).

The move function lets us iterate through all five limbs over the first key,
while KEY2 and KEY3 let us move the selected limb up or down. Each servo
position is stored in the array pos and each servo starts in the middle position
of 128. We also print the current servo settings to the LCD for each button
press (see Figure 12.2, right, and Program 12.2).

With this, we can generate any Starman configuration, but this is not fast
enough to make it walk. Therefore, we wrote a program that only moves a sin-
gle support limb (limb number three) back and forth. Taking advantage of
body mass and friction, this movement will let Starman slowly “shuffle” to the
left (Program 12.3 and Figure 12.3).

Moving just one of Starman’s support legs will not result in a convincing
walking motion – an economic, speedy motion requires coordinated action of
several limbs and the optimal sequence cannot be found easily. We could use
trial and error to go through different movement patterns, hoping that Starman
will finally walk, or we can use an AI (Artificial Intelligence) method, such as
Genetic Algorithms. If we want to try this, we first need to come up with a
motion model for Starman.

Program 12.1: Starman SIM script

1 robot ../../robots/Articulated/starman.robi
2 Starman 1000 300 1000 90 move.x

Figure 12.2: Starman’s limb movement real (left) and simulated (right)

Starman

153

Program 12.2: Selecting and moving individual limbs in C

1 #include "eyebot.h"
2 #define MIN(a,b) (((a)<(b))?(a):(b))
3 #define MAX(a,b) (((a)>(b))?(a):(b))
4
5 int main()
6 { int pos[5] = {128,128,128,128,128};
7 int i,k, leg=0;
8
9 LCDMenu("Leg+", "+", "-", "END");

10 do
11 { switch(k=KEYGet())
12 { case KEY1: leg = (leg+1)%5; break;
13 case KEY2: pos[leg] = MIN(pos[leg]+5, 255); break;
14 case KEY3: pos[leg] = MAX(pos[leg]-5, 0); break;;
15 }
16 for (i=0; i<5; i++)
17 { LCDPrintf("S%d pos %d, ", i+1, pos[i]);
18 SERVOSet(i+1, pos[i]);
19 }
20 LCDPrintf("\n");
21 } while (k != KEY4);
22 }

Program 12.3: Moving single limb forward/backward to shuffle Starman in C

1 #include "eyebot.h"
2
3 int main()
4 { int x, y, phi;
5 for (int i = 0; i < 10; i++)
6 { VWGetPosition(&x, &y, &phi);
7 LCDPrintf("x=%4d, y=%4d\n", x, y);
8 SERVOSet(3, 128+27); OSWait(1000);
9 SERVOSet(3, 128); OSWait(1000);

10 }
11 }

Figure 12.3: Shuffling Starman with position data

Learning Robots

154

12

12.2 Motion Model
In order to approach things more systematically, we want to establish a motion
model for Starman. For this, we assume that Starman’s motion pattern will be
repetitive, so we will only need to find the motion sequences for each of the
five limbs for a relatively short time, e.g. two seconds, then the sequence will
repeat. Since we do not want two limbs to collide and they are only 360°/5 =
60° apart, we need to limit their motion to [–30°, +30°] or somewhat less, con-
sidering the limb thickness. So, our complete motion solution would look
something like the graph in Figure 12.4, where each limb is represented by one
curve. Each curve (servo) starts and finishes in the neutral position 0, repre-
senting a limb’s straight orientation.

But we do not know yet what each actual curve function should be. We will
leave this issue until later and first digitize this graph by representing each
curve by a number of control points. Using around 10 points per curve (limb
movement) should be enough. Movements between control points will either
be smoothed automatically by the motor hardware or through code in software.
The graph in Figure 12.5 shows the 10 control points for one of the five limbs.

So this solution would be the series of integer numbers
[0, 15, 28, 27, –5, –20, –4, 6, –20, –21] .

Figure 12.4: Starman motion sequence for five limbs

Figure 12.5: Starman control points for a single limb

Genetic Algorithms

155

Since we are dealing with a real physical system, it will probably be suffi-
cient to use integer values in the range [–30, +30] rather than rational numbers,
so we can easily represent each control point with 1 byte. A full Starman con-
figuration for any point in time would then be 5 bytes (1 byte per limb) and a
full motion solution would be 50 bytes (10 control points · 5 bytes).

Details for this approach on a more complex robot can be seen in [Boeing,
Bräunl 2015]2.

12.3 Genetic Algorithms
Genetic Algorithms (GAs) are an optimization method for problems that are
otherwise hard to solve. GAs maintain a set (generation) of individuals (chro-
mosomes or genotypes), which are encoded as byte sequences. Each chromo-
some’s performance is evaluated by the fitness function in the real or simulated
world, which will assign a performance value to each chromosome. This value
will then determine each chromosome’s chance of getting selected for genetic
recombination for the next generation. The whole iteration process will stop
after a maximum number of generations or when a sufficiently good solution
has been found (Figure 12.6).

Program 12.4 shows this central loop in the main program – terminated
either by a maximum number of iterations or when a certain walking perfor-
mance has been achieved.

In every iteration, we evaluate each individual chromosome from a pool of
n chromosomes by calling the function evaluate. The best performing chromo-
some is being copied unchanged into the next generation. We will then con-
duct (n–1)/2 iterations, calling selectgene twice and using the crossover func-
tion to generate two new chromosomes from each pair of old chromosomes.
As a final step, a number of mutations are executed.

2 A. Boeing, T. Bräunl, Dynamic Balancing of Mobile Robots in Simulation and Real Envi-
ronments, in Dynamic Balancing of Mechanisms and Synthesizing of Parallel Robots, Dan
Zhang, Bin Wei (Eds.), Springer International, Cham, Switzerland, Dec. 2015, pp. 457-474
(18)

Figure 12.6: Generating individuals from chromosomes

Gene Chromosome

Population

Individual

Gene Pool

Geneotypes Phenotypes

Learning Robots

156

12

Crossover (Figure 12.7 and Program 12.5) is a very simple operation. Tak-
ing two chromosomes A and B that have been selected in the previous step, a
random cutting position through their bit-string is determined. Then the left
half of chromosome A is glued to the right half of chromosome B and vice
versa. These two new child chromosomes will enter the next generation of the
process.

The mutation operation (Figure 12.8 and Program 12.6) is equally simple.
A random position in a random chromosome of the current generation is deter-
mined to just flip this one bit (0→1 or 1→0). The idea behind this measure is
to ensure that the whole search volume is being explored. If, for example, all

Program 12.4: Gene pool definition and main genetic algorithm loop in C

1 BYTE pool[POP][SIZE],
2 next[POP][SIZE]; // POP needs to be an odd number
3 ...
4 for (iter=0; iter<MAX_ITER && maxfit<FIT_GOAL; iter++)
5 { evaluate();
6 memcpy(next[0], pool[maxpos], SIZE); // pres. best
7 for (pos=1; pos<POP; pos+=2)
8 { s1 = selectgene(); // select 1st
9 s2 = selectgene(); // select 2nd

10 crossover(s1,s2, pos); // mating
11 }
12 for (int m=0; m<MUT; m++) mutation(); // mutations
13 memcpy(pool, next, POP*SIZE); // copy genepool
14 }

Figure 12.7: Genetic crossover principle

Program 12.5: Crossover function in C

1 void crossover(int g1, int g2, int pos)
2 { int cut = rand()%(SIZE-1) +1; // range [1, SIZE-1]
3 memcpy(next[pos], pool[g1], cut);
4 memcpy(next[pos]+cut, pool[g2]+cut, SIZE-cut);
5 memcpy(next[pos+1], pool[g2], cut);
6 memcpy(next[pos+1]+cut, pool[g1]+cut, SIZE-cut);
7 }

Genetic Algorithms

157

chromosomes in the current generation started with a 0-bit, then a solution
starting with a 1-bit would never be considered if there was no mutation.

Before starting the evaluation process, we need to initialize our chromo-
somes with some random values (within reason). We set all limb angle control
points to the straight middle position (value 128) and then add random values
to it, which will account for ±5.

The limbs of the simulated robot also have to be initialized before we can
start. We do this with five calls to the SERVOSet function (Program 12.7).

Figure 12.8: Genetic mutation principle

Program 12.6: Mutation function in C

1 void mutation()
2 { int ind = rand() % (POP-1) + 1; // [1, POP-1]
3 int pos = rand() % SIZE;
4 int bit = rand() % 8;
5 next[ind][pos] ^= (1<<bit); // XOR: flip bit
6 }

Program 12.7: Initializing gene pool and set function for limbs in C

1 void init()
2 { int i, leg, point, pos,val;
3 for (i=0; i<POP; i++)
4 { pool[i][0]=128; pool[i][1]=128; pool[i][2]=128;
5 pool[i][3]=128; pool[i][4]=128; // neutral init
6 for (point=1; point<CPOINTS; point++)
7 for (leg=0; leg<5; leg++)
8 { pos = 5*point+leg;
9 val = pool[i][pos-5] + (rand() & 10) - 5;//r. +/-5

10 pool[i][pos] = MAX(0, MIN(255, val));
11 }
12 }
13 }

14
15 void set(chrom c, int pos)
16 { int leg;
17 for (leg=0; leg<5; leg++) SERVOSet(leg+1, c[5*pos+leg]);
18 }

Learning Robots

158

12

The fitness function in Program 12.8 simply runs the robot through the con-
trol points for a given chromosome for a certain number of iterations – then
checks in what position the robot has ended up. The further away the robot
lands from the starting point, the “fitter” it is.

As the robot wanders around a fair bit after thousands or millions of chro-
mosome evaluations, we need to set the robot back to the same starting point
before each simulation run. Otherwise, it might run into a wall or worse, fall
off the virtual table. For this, we can use the simulation-only function SIM-
SetRobot.

Function evaluate calls the fitness evaluation for each chromosome in the
gene pool and stores results in the global variable fitlist. It also adds up the
total fitness sum of all the chromosomes in the whole generation, which we
will need later for the selection process.

The selection function is called twice in every iteration of the main pro-
gram. It needs to select a random chromosome; however, the random function
needs to be biased to reflect each chromosome’s fitness. If chromosome A has
twice the fitness value of chromosome B, then A should be twice as likely to be
selected than B.

Program 12.8: Fitness function calculation in C

1 int fitness(int i)
2 { int rep, point, x, y, phi;
3
4 SIMSetRobot(1, 1000, 1000, 0, 90);
5 VWSetPosition(0,0,0);
6
7 set(pool[i],0); // starting position
8 OSWait(2000);
9 for (rep=0; rep<REP; rep++)

10 for (point=0; point<CPOINTS; point++)
11 { set(pool[i], point);
12 OSWait(250); // ms
13 }
14 VWGetPosition(&x, &y, &phi);
15 return 1 + abs(x) + abs(y); // min. fitness 1
16 }
17
18 void evaluate()
19 { fitsum = 0.0;
20 maxfit = 0.0;
21 for (int i=0; i<POP; i++)
22 { fitlist[i] = fitness(i);
23 fitsum += fitlist[i];
24 if (fitlist[i]>maxfit) // record max fitness
25 { maxfit=fitlist[i]; maxpos=i; }
26 }
27 }

Evolution Run

159

We solve the selection problem with what we call the “wheel of fitness”
(see Figure 12.9 and Program 12.9). Just imagine the selection process as spin-
ning the wheel on a game show. Wheel segments are covered with chromo-
some symbols, where the segment size matches the relative fitness level (twice
the fitness means twice the area). So, assuming each spin is random, it will
select a random chromosome with the desired bias according to their fitness
levels.

12.4 Evolution Run
Running the GA program will take a long time. Each chromosome bit-string of
the population is evaluated, which runs in real time at around 10 seconds per
robot. So, evolving a population of 100 robots over 100 generations will take
105 seconds, which equals roughly 28 hours. Of course, this could be executed
significantly faster on a more powerful computer system, running the simula-
tor in a “headless mode” with a faster-than-real execution time.

Figure 12.9: Gene (parent) selection principle with “wheel of fitness”

spin

select
winner

Program 12.9: Gene (parent) selection function in C

1 int selectgene()
2 { int i, wheel,count;
3
4 wheel = rand() % fitsum; // range [0, fitsum-1]
5 i=0;
6 count = fitlist[0];
7 while (count < wheel)
8 { i++;
9 count += fitlist[i];

10 }
11 return i;
12 }

Learning Robots

160

12
The screenshots in Figure 12.10 show the fitness levels of a population of

15 Starmen after 10 (left) and 80 (right) iterations. The fitness value for the
best individual has more than doubled during this evolution process (from 78
to 128).

Finally in Figure 12.11, Starman is shown at its initial position, indicated by
a green floor marker (left), and at its final position after executing the evolved
gait (right).

12.5 Tasks

Figure 12.10: Evolution run stages

Figure 12.11: Before and after execution of the evolved gait

• Optimize the GA implementation for Starman and find the optimal walking pattern.
• Add an initial start sequence that will lead into the repetitive motion sequence and

evolve this also with a GA.
• Extend (or even evolve) Starman into a more complex articulated creature.

161161

13
.

. .
TRAFFIC MODELS

n this chapter, we come close to autonomous cars – only at a smaller
scale. We use the same robots as before, but we place them in a miniature
traffic scenario, complete with lane markings, traffic signs, parking areas

and other cars (or robots). Figurines of pedestrians, houses, trees and more can
be included for additional detection tasks.

13.1 Autonomous Model Car Competitions
There are at least two student competitions in this area, the Carolo-Cup1, an
annual event organized by the Technical University Braunschweig, Germany,
and the very similar Audi Autonomous Driving Cup2, organized by the car
manufacturer Audi. While the Carolo-Cup is directly open to all participants,
Audi Cup participants first need to pass a preselection phase. The successful
teams then receive a free autonomous model car for the competition.

In the following, we concentrate on the Carolo-Cup, which we scaled down
for our robots at a ratio of 2:1. We rebuilt the standard Carolo intersection loop
on a large table in our lab as well as in simulation (see Figure 13.1).

The Carolo-Cup allows us to develop and improve on a large range of tasks
relevant for automotive research. All of the algorithms developed for the small
robot cars can then be extended for applications in real autonomous vehicles.
The areas covered are:

• Lane detection and lane keeping
• Collision avoidance
• Detection of other vehicles and pedestrians
• Traffic sign recognition
• Automated parking
• Automated overtaking

I

1 TU Braunschweig, Carolo-Cup, https://wiki.ifr.ing.tu-bs.de/carolocup/carolo-cup
2 Audi AG, Audi Autonomous Driving Cup, https://www.audi-autonomous-driving-cup.com

© Springer Nature Switzerland AG 2023

T. Bräunl, Mobile Robot Programming, https://doi.org/10.1007/978-3-031-32797-1_13

https://wiki.ifr.ing.tu-bs.de/carolocup/carolo-cup
https://www.audi-autonomous-driving-cup.com
https://doi.org/10.1007/978-3-031-32797-1_13
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32797-1_13&domain=pdf

Traffic Models

162

13

• Automated intersection control
• Automated zebra crossing detection
• Automated speed control following signage
• Vehicle-to-vehicle and vehicle-to-base-station communication

The beauty of this competition is that new teams can start with just one or
two functionalities to develop a working system, e.g. lane keeping and colli-
sion avoidance, and then gradually improve their implementation while also
adding new functionalities.

13.2 Carolo-Cup
All we need for the Carolo-Cup simulation setup is the standard Carolo loop as
an image file from Carolo’s website, which we then convert into a real or sim-
ulated environment. We complete the scene with some handmade traffic signs,
for which there are also image files on the Carolo website.

With a few traffic signs, the Carolo SIM script looks like Program 13.1 and
will create the environment shown in Figure 13.2. The basic Carolo world file
in Program 13.2 (here without walls) is extremely simple, as it just uses the bit-
map for the floor.

In the extended example shown in Figure 13.2, we added walls that match
exactly our lab setup for the real robots – which helps to keep real and simu-
lated robots from falling off the table.

The software design and implementation work for the Carolo-Cup system
described in the following sections was implemented by UWA visiting stu-
dents Shuangquan Sun, Jingwen Zheng, Zihan Lin (all from the University of
Science and Technology of China), Zihan Qiao and Shanqi Liu (both from
Zhejiang University).

Figure 13.1: Real environment versus simulated environment

Carolo-Cup

163

Program 13.1: Carolo-Cup SIM script

1 # Environment
2 world ../../worlds/small/Carolo.wld
3
4 # Objects
5 object ./objects/ParkingSign/ParkingSign.esObj
6 object ./objects/SpeedLimitSign/cancelspeedlimitsign.esObj
7 object ./objects/SpeedLimitSign/speedlimitsign.esObj
8 object ./objects/StopSign/stopsign.esObj
9

10 # Objects
11 ParkingSign 990 223 192
12 StopSign 2270 1192 121
13 StopSign 2301 1922 312
14 CancelSpeedLimitSign 1899 2861 1
15 SpeedLimitSign 46 1820 87
16
17 # robotname x y phi
18 S4 1637 352 180 lane.x

Program 13.2: Carolo-Cup world file

1 floor_texture carolo-lab.png
2 width 3100
3 height 3100

Figure 13.2: Carolo-Cup environment in EyeSim

Traffic Models

164

13

13.3 Lane Keeping
The first step is conducting image processing to find lane markings, and then
using this information to generate a model of the most likely lane curvature.
We use OpenCV (see Chapter 11 on robot vision) for all image processing as it
is a very versatile and comprehensive library. This also means that our applica-
tion programs have to be written in C++ or Python, as C is not supported by
OpenCV. The processing steps are shown in Figure 13.3.

It should be noted that many of these operations are very compute-inten-
sive. This is especially the case for the Hough transformation used here as well
as for feature validation, curve fitting with Lagrange interpolation polynomial
and many other operations not used in this project. The compute power of our
real robots is rather limited through the Raspberry Pi controller and we do not
want to transmit images to a “remote brain” and receive back driving instruc-
tions, as this would reduce our robots to remote-controlled cars. Instead, we
have an interest in developing fast-computing, alternative vision algorithms
that allow us to process automotive vision on an embedded controller.

Figure 13.3: Lane detection algorithm steps

Image acquisition and transfor-
mation into OpenCV format

Selection of the inside edges only for
left and right lane

Hough transformation to classify
edges (blue) and then edge distance
calculation to the top-left and top-
right corners (red) for selection

Canny edge detection

Cut-out of region of interest

Intersections and Zebra Crossings

165

From the previous steps, we can now calculate the vehicle’s relative posi-
tion to the lane center and correct the curvature of its driving path, to keep it in
the middle of the lane. This works quite well for straight passages.

Unfortunately, this method does not work as nicely in a curve. The standard
Raspberry Pi camera has a very narrow field of view, so when entering a
curve, the robot will only see the outer lane. This problem could of course be
fixed in hardware, either by an alternative camera with a wider lens (probably
the easiest solution) or by mounting the camera on a servo and then rotating
the camera to keep both side lanes in the field of view. We can still try to make
sense of a single visible lane as shown below; however, this will be at the cost
of a reduced robustness of the program. This means that a slight disturbance
can get the autonomous vehicle off track and make it leave the driving lane
completely.

As can be seen from the sample images in Figure 13.4, there can be very lit-
tle edge data available in a curve, especially if only the dashed middle lane
marking is in view. The less edge pixels we have, the more error-prone the
curve detection algorithms will be.

13.4 Intersections and Zebra Crossings
Intersections and zebra crossings are special cases that need to be handled by a
Carolo program. In a sense, they are the two extreme cases in terms of lane
markings visible in an image frame. At the start of an intersection, there are no
vertical lane markings visible at all. At a zebra crossing, there is a larger
number (typically around 15) of vertical edges. So, this can be a good first cri-
terion to distinguish these traffic situations.

At an intersection (see Figure 13.5, top), the autonomous vehicle must
detect the horizontal stopping line and come to a full stop. It must then check
for any cross traffic (a wide-angle lens definitely helps) before driving through
the intersection.

Figure 13.4: Lane markings in a right/left turn

Detecting only the left lane marking
in a right-hand turn

Detecting only the dashed middle
lane marking in a left-hand turn
(remember, we drive on the left side
 of the road in Australia)

Traffic Models

166

13
At a zebra crossing (see Figure 13.5, bottom), the autonomous vehicle must

slow down and check for pedestrians (we use little model figurines) before it
can drive through the crossing.

13.5 Traffic Sign Recognition
Traffic sign recognition is a lot more complex and we use a combination of
learning methods for this as described in [Sun et al. 2019]3. We use the Histo-
gram of Oriented Gradients (HOG) method for this task [Dalal, Triggs 2005]4,
which can run on a Raspberry Pi 3 at a reasonable frame rate of around 3Hz for
a QVGA image resolution (320×240 pixels). Figure 13.6 shows some of the
signs to be detected and their corresponding HOG patterns.

Figure 13.5: Counting vertical edges to detect intersections and crossings

Start of intersection

Zebra crossing
(detected bars marked in blue)

3 S. Sun, J. Zheng, Z. Qiao, S. Liu, Z. Lin, T. Bräunl, Architecture of a driverless robot car
based on EyeBot system, 3rd International Conference on Robotics: Design and Applica-
tions (RDA 2019), Xi’an, China, April 2019

4 N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2005, pp.
886-93

Figure 13.6: Traffic signs and derived HOG patterns

Traffic Sign Recognition

167

In Figure 13.7 we show some examples of image frames with superimposed
sign recognition. Note that this even works with multiple signs in the same
image frame.

The diagram in Figure 13.8 shows the execution time on a Raspberry Pi 3.
The average processing time per image frame is 340ms but it varies somewhat.
The standard Raspbian operating system does not support real-time operation,
but this is also not really necessary, as long as there are no major outliers in
image processing time. Traffic sign recognition runs as a separate process on
the controller, so it will not affect other control algorithms that have to run at a
faster frequency, such as distance sensor evaluation for collision avoidance.

The precision (positive prediction value), recall (sensitivity) and F-score for
the testing data set of our implementation are shown in Figure 13.9.

Figure 13.7: Traffic sign recognition in driving sequence

Figure 13.8: Execution timing diagram for traffic sign recognition

Traffic Models

168

13

13.6 End-to-End Learning
Neural networks and deep learning gain more and more momentum in autono-
mous driving software. The approaches presented in this chapter so far range
from the traditional engineering approach, where specific image processing
functions are applied (e.g. for detecting lane markings), to the use of learning
algorithms for a particular task (e.g. traffic sign recognition). However, the
ultimate goal for learning systems is end-to-end learning. The idea is to present
real live data (e.g. a video feed from the driver’s perspective) together with the
correct desired output (here the steering angle) to a deep neural network and let
it learn the complete task in one piece without a programmer having to dissect
or preprocess the input data.

Clearly, such an end-to-end system will be a tremendous improvement over
traditional AI (Artificial Intelligence) systems and save significant costs in
developing a learning system. For autonomous driving, all that is required is a
recording of the video feed and steering angle of some good drivers in a large
variety of driving scenarios, and the deep neural network will learn how to
drive autonomously. Such a scenario was implemented by researchers at
Nvidia for an actual drive-by-wire car, using one of their parallel GPGPU
(general purpose graphics processor unit) systems [Bojarski et al. 2016]5. A
similar approach, only for general object detection, was implemented at Goo-
gle Inc. [Howard et al. 2017]6. Figure 13.10 explains the principle of end-to-
end learning.

Nicholas Burleigh and Jordan King together with the author have used a
simplified deep network based on the Nvidia and Google approaches to train a
robot driving the Carolo-Cup track and detecting traffic signs [Burleigh, King,

Figure 13.9: Precision, recall and F1-score for traffic sign recognition

5 M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P- Goyal, L. Jackel, M.
Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, K. Zieba, End to End Learning for Self-
Driving Cars, Nvidia Corporation, Apr. 2016, pp. (9)

6 A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H.
Adam, MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applica-
tions, Google Inc., Apr. 2017, pp. (9)

End-to-End Learning

169

Bräunl 2019]7. We recorded 1,000 test images together with the correct steer-
ing angles from running the previously described engineering solution of the
Carolo-Cup problem. Figure 13.11 shows sample images for the categories
“steer left” (left two images), “drive straight” (middle two images) and “steer
right” (right two images).

We then trained a deep neural network using TensorFlow8 with this data
and ten possible steering output values (from full left via straight to full right).
The resulting trained network was small enough so it could run on a robot’s
on-board Raspberry Pi 3 controller with around 9 fps (frames per second) suc-
cessfully navigating the Carolo-Cup track.

Figure 13.10: End-to-end learning for autonomous driving

Step 1: Collect 1,000s of input images
and classify them

Step 2: Train the deep network structure
repetitively until it converges

Image and correct
steering input

Steering
angle output

embedded controller in real time

NN

(fixed weights)

Compare for backpropagation

Step 3: Run the finished (frozen) network on a simple

7 N. Burleigh, J. King, T. Bräunl, Deep Learning for Autonomous Driving, Intl. Conf. on Dig-
ital Image Computing: Techniques and Applications (DICTA), Dec. 2019, Perth, pp. (6)

Figure 13.11: End-to-end learning of traffic scenes for turning left (left),
driving straight (middle) and turning right (right)

8 TensorFlow, https://www.tensorflow.org

https://www.tensorflow.org

Traffic Models

170

13
Although simulated and real camera images look similar, the trained net-

work for one system could not be transferred to the other, so it required sepa-
rate input data collections and separate training sessions for simulated and real
robots.

13.7 Tasks

Implement your own version of the Carolo-Cup. Start with one functionality and then add
more and more features until you have a comprehensive autonomous driving system:

• Lane detection and lane keeping
• Collision avoidance
• Detection of other vehicles and pedestrians
• Traffic sign recognition
• Automated parking
• Automated overtaking
• Automated intersection control
• Automated zebra crossing detection
• Automated speed control following signage
• Vehicle-to-vehicle and vehicle-to-base-station communication
• End-to-end learning system for the tasks listed above

171171

14
.

. .
AUTONOMOUS CARS

t is a logical step to advance from autonomous robots to autonomous vehi-
cles / driverless cars. They require the same types of sensors and similar
algorithms, although adapted to a road environment. Large advancements

in autonomous driving have been made over the last decade, and not just by
automotive companies, but also by IT companies such as Mobileye (now a part
of Intel) and Waymo (formerly Google X). While traditional software engi-
neering methods, such as image processing and pattern matching, have been
the predominant methods in sensor data processing for autonomous driving in
the past, learning methods based on artificial neural networks (ANN) have
taken over in the last decade. Large Deep Learning systems with tens of layers
of neurons and end-to-end learning systems, which do not even require a sen-
sor-preprocessing step, have delivered remarkable results. However, given the
nature of these learning systems, it remains largely unclear – even to experts –
what these systems learn exactly, on which aspects (e.g. image features) they
focus on, and how reliable they really are. How to certify a learning system for
autonomous driving remains the million dollar question. Our Renewable
Energy Vehicle Project (REV)1 at UWA has developed several autonomous
vehicles, some of which we will introduce in this chapter.

14.1 Electric Drive System
Every vehicle design starts with a chassis and a drive system. Figure 14.1
shows our experimental car chassis, which is a Formula-SAE single-seater
race car, built from the ground up by welding pipes together. The drive system
by Ian Hooper, UWA, comprises two DC motors, one for each rear wheel.
Each motor has its own motor controller, which are linked through an elec-
tronic differential for turning, as the outer wheel in a curve will have to cover a
larger distance than the inner wheel.

1 Renewable Energy Vehicle Project, online: https://REVproject.com

I

© Springer Nature Switzerland AG 2023

T. Bräunl, Mobile Robot Programming, https://doi.org/10.1007/978-3-031-32797-1_14

https://REVproject.com
https://doi.org/10.1007/978-3-031-32797-1_14
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32797-1_14&domain=pdf

Autonomous Cars

172

14

14.2 Drive by Wire
While an electric drive system certainly helps with implementing an autono-
mous driving system, it is technically not a prerequisite. The first step for any
autonomous vehicle is to implement a drive-by-wire system (see Figure 14.2
by Jordan Kalinowski, UWA). This means that the car’s three main functions:
steering, braking and accelerating can be controlled from a computer system.
A low-level embedded processor will control these three functions and receive
commands from a higher-level intelligent drive computer.

1. Steering
Actuating the steering is probably the hardest part. It requires a powerful
motor linked to the steering column, e.g. via a belt drive, so that a computer
command can change the steering angle. Of course, this immediately raises
safety concerns:

• The driver/passenger could get his/her hand stuck in the steering wheel
while the drive computer turns it.

• The driver/passenger may want to interfere with the steering but may
not be able to physically overpower the motor on the steering column.

• The motor/belt setup may get jammed or otherwise interfere with the
manual steering system.

2. Braking
We did not want to interfere with the friction brakes directly for safety reasons,
so we built a lever that can pull the brake pedal from behind, which is driven

Figure 14.1: Vehicle chassis and dual motor drive system

Sensors and Safety Systems

173

by a powerful servo. This leaves the driver in control in manual mode as well
as in autonomous mode.

3. Accelerating
Computerizing the acceleration function is the easiest part. All modern accel-
erator pedals are already electronic, so we only need an analog multiplexer that
switches between the pedal and the computer output as the input for the motor
controller.

14.3 Sensors and Safety Systems
For autonomous driving, we need a number of sensors, so that the system can
get an accurate account of the vehicle’s position, orientation and speed as well
as its environment, including all obstacles, other vehicles, pedestrians and so
on (see Figure 14.3). From this, it needs to calculate a desired path that will
then be sent as steering/braking/acceleration commands to the low-level drive-
by-wire controller. The link between the high-level and the low-level control-
ler can be made either via dedicated data lines or via a bus system, such as
CAN or USB. Typical sensors for autonomous vehicles include:

Figure 14.2: Drive-by-wire system: steer, brake, accelerate

Autonomous Cars

174

14
• Lidar (single or multiple scan layers)
• Radar
• Camera (single, stereo or multi-focal)
• IMU (Inertial Measurement Unit)
• GNSS (Global Navigation Satellite System, e.g. GPS)
• Wheel encoders

Further details can be found in [Lim et al. 2018]2 on Lidar-based autono-
mous driving and in [Teoh, Bräunl 2012]3 for vision-based autonomous driv-
ing.

As a full-size vehicle can be extremely dangerous to the driver/passenger as
well as to bystanders, we need to implement several layers of safety systems,
both on-board the car and on an external base station. A separate, dedicated
embedded controller takes over the safety feature implementation on the vehi-
cle, see [Drage, Kalinowski, Bräunl 2014]4.

Figure 14.3: Sensor stack on top of REV car: IMU, stereo cameras, Lidar

2 K. Lim, T. Drage, R. Podolski, G. Meyer-Lee, S. Evans-Thompson, J. Yao-Tsu Lin, G.
Channon, M. Poole, T. Bräunl, A Modular Software Framework for Autonomous Vehicles,
IEEE Intelligent Vehicles Symposium (IV), 2018, Chang Shu China, pp. 1780–1785 (6)

3 S. Teoh, T. Bräunl, Symmetry-Based Monocular Vehicle Detection System, Journal of Ma-
chine Vision and Applications, Springer, vol. 23, no. 4, July 2012, pp. 831-842 (12)

4 T. Drage, J. Kalinowski, T. Bräunl, Integration of Drive-by-Wire with Navigation Control
for a Driverless Electric Race Car, IEEE Intelligent Transportation Systems Magazine, pp.
23-33 (11), Oct. 2014

Formula-SAE Autonomous

175

Autonomous Vehicle Safety
a. Emergency stop buttons

• On-board button to disengage autonomous mode
• On- board button to power down vehicle
• Remote emergency stop button

b. Electronic heartbeat between car and base station
• Automatic vehicle stop if data link is broken

c. Geofencing
• Automatic vehicle stop if outside of predefined GPS area

d. Watchdog timer
• Automatic vehicle stop if vehicle software becomes unresponsive

e. Manual override
• Override of autonomous operation by touching brake
• Override of autonomous operation by touching steering wheel

14.4 Formula-SAE Autonomous
The Society of Automotive Engineers (SAE) and Formula Student Germany
(FSG) have a long-standing tradition of hosting university student competi-
tions for building and racing one-seater race cars. In 2017, SAE and FSG intro-
duced the new event Formula-SAE Autonomous5, where a fully autonomous
vehicle has to find its way through an unknown track, marked out with traffic
cones at specific distances and of specific color (Figure 14.4).

As there are no other obstacles and no other vehicles on the track, the easi-
est method to detect these cones is by using a single-beam Lidar sensor that is
mounted horizontally in front of the vehicle at a low height, so it can scan all
cones in a 180° range. The competition rules require different colored cones
for the left and right side of the track (blue and yellow, respectively), but this
does not matter when using a Lidar, as it only reports distance values and not
colors. A camera system can be used to supplement cone detection and
improve performance and safety – or even be the sole sensor in order to build a
cheaper self-driving system.

Our cone-driving algorithm only uses a Lidar for cone detection and an
IMU for sensing vehicle movements. We ended up not using GPS, as it tended
to be quite unreliable and inaccurate without using additional correction ser-
vices. The camera-based cone detection was less reliable than the Lidar, but
we used the camera for other autonomous driving tasks outside the SAE com-
petition, such as lane detection when driving on a race track without cones.
The autonomous driving software was implemented by Chao Zhang, Craig
Brogle, William Lai, Timothy Kelliher, Manuchekhr Adina-Zada and Thomas

5 Formula Student Germany, Autonomous Driving at Formula Student Germany 2017, Aug.
2016, https://www.formulastudent.de/pr/news/details/article/autonomous-driving-at-for-
mula-student-germany-2017/

https://www.formulastudent.de/pr/news/details/article/autonomous-driving-at-for-mula-student-germany-2017/
https://www.formulastudent.de/pr/news/details/article/autonomous-driving-at-for-mula-student-germany-2017/

Autonomous Cars

176

14

Drage; details are listed in the papers by [Lim et al. 2019]6 and [Brogle et al.
2019]7. Driving videos can be seen on the REV web page8.

14.5 Formula-SAE Simulation
As the drive system on the actual car is quite complex, we want to look here at
a simplified implementation that we can run in the EyeSim simulator. The first
step is to revisit EyeSim’s Lidar sensor. By default, it reports back 360 dis-
tance values, covering a full circle of 360°. However, this can be changed in
the robot’s ROBI description file, e.g., to deliver 1,000 values over a 180°
range.

Figure 14.4: Autonomous track racing of REV-SAE on various circuits

6 K. Lim, T. Drage, C. Zhang, C. Brogle, W Lai, T. Kelliher, M. Adina-Zada, T. Bräunl, Evo-
lution of a Reliable and Extensible High-Level Control System for an Autonomous Car,
IEEE Transactions on Intelligent Vehicles, 2019, pp. 396–405 (10)

7 C. Brogle, C. Zhang, K. Lim, T. Bräunl, Hardware-in-the-Loop Autonomous Driving Sim-
ulation!"IEEE Transactions on Intelligent Vehicles, 2019, pp. 375–384 (10)

8 REV Project, online: http://REVproject.com

Program 14.1: Formula-SAE SIM script

1 settings VIS
2 # World File
3 world field2.wld
4 # Robots
5 robot "../../robots/Ackermann/SAE.robi"
6 SAE 4000 1200 90 conedrive.x
7 # Objects
8 object "../../objects/ConeOrange/coneorange.esObj"
9 Cone-O 4000 6500 0

10 Cone-O 3000 6100 0
11 Cone-O 5000 6100 0

http://REVproject.com

Formula-SAE Simulation

177

In Program 14.1 we have set up a SIM script for our Formula-SAE car in an
empty plane that only contains three orange cones. We can now click and drag
the car around the driving area and observe changes in the image and Lidar
data displayed on the LCD (Figure 14.5).

Figure 14.5: Testbed setup for cone detection using a Lidar

Program 14.2: Lidar detection testbed in C

1 int main ()
2 { int i, k, m;
3 int scan[POINTS];
4 float scale;
5 BYTE img[QQVGA_SIZE];
6
7 LCDMenu("DRIVE", "STOP", "", "END");
8 CAMInit(QQVGA);
9 LIDARSet(180, 0, POINTS); // range, tilt, points

10 do
11 { k = KEYRead();
12 CAMGet(img);
13 LCDImage(img);
14 if (k==KEY1) VWSetSpeed(200,0);
15 if (k==KEY2) VWSetSpeed(0,0);
16 LIDARGet(scan);
17 m = getmax(scan);
18 scale = m/150.0;
19 LCDSetPos(13,0);
20 LCDPrintf("max %d scale %3.1f\n", m,scale);
21 for (i=0; i<10; i++)
22 LCDPrintf("%4d ",scan[i*(POINTS/10)]);
23 for (i=0; i<PLOT; i++) // plot distances
24 { LCDLine(180+i,150-scan[SCL*i]/scale,180+i,150,BLUE);
25 LCDLine(180+i,150-scan[SCL*i]/scale,180+i, 0,BLACK);
26 }
27 LCDLine(180+POINTS/(2*SCL),
28 0,180+POINTS/(2*SCL),150, RED);
29 } while (k!=KEY4);
30 }

Autonomous Cars

178

14
The main function in Program 14.2 for displaying camera and Lidar sensor

data is an extension of the Lidar plotting program from Chapter 4. The func-
tion getmax is a small routine that returns the highest distance value from the
current Lidar scan. The function LIDARSet sets the Lidar’s scanning angle and
angular resolution. This could also be specified in the car’s ROBI-file.

On the screen in Figure 14.5, left, we see the camera image from the car’s
point of view as well as the 180° Lidar data. As there are no surrounding walls
(as you would expect on a race course), all Lidar points not hitting a cone will
come back with the maximum value (in this case 9999mm). Each of the three
cones leaves a deep cut in the Lidar diagram, but it is also evident that the mid-
dle cone (obstacle) is slightly further away than the two outside ones (the mid-
dle black gap starts slightly higher than the two outside ones).

Although the complete system for driving the real Formula-SAE car is a lot
more complex and requires a number of important safety features, we can
implement a simplified working algorithm for cone track racing in EyeSim as
shown in Program 14.3. The idea implemented here is to use a single-layer for-
ward-facing Lidar sensor mounted at cone height in front of the vehicle. This
will reliably detect cones in a 180° field of view, provided there is only a small
rotational pitch movement of the vehicle – something that cannot be assumed
for a real vehicle. We search for the two most central Lidar obstacles that are
left and right of the red middle line (see Figure 14.6, left) in order to find a col-
lision-free steering angle. The black Lidar shadows in this figure almost look
like the poles in slalom skiing, and we use a similar technique to avoid them.

Program 14.3 shows the main iteration of the driving routine, assuming the
car is driving with a constant speed set by the function MOTORDrive. As the
middle of the visual field shifts significantly in a curve and our camera does
not have a motorized pan-axis, we use variable middle when we call auxiliary
functions getleftcone and getrightcone. We then update the middle position
between these two cones and calculate the new steering angle as the deviation
from the straight direction. Function SERVOSet is called for the steering,
which has a range of [0, 255] where the middle value 128 represents driving
straight. Adding the cone gap position value dir to this middle value lets us fol-
low the cone track (see Figure 14.6, right).

Figure 14.6: F-SAE car’s camera and Lidar view (left) and track driving (right)

Formula-SAE Simulation

179

Program 14.3: Main loop of simplified SAE cone track driving in C

1 do // car is already running with MOTORDrive(1, SPEED)
2 { OSWait(100); // reduce main loop to 10Hz
3 CAMGet(img);
4 LCDImage(img);
5
6 LIDARGet(scan); // Lidar set to 180°range at 180 pt.
7 m = getmax(scan);
8 scale = m/150.0;
9 l = getleftcone (scan, middle); // left-most cone

10 r = getrightcone(scan, middle); // right-most cone
11 if (l>0 && r>0 && l<r)
12 { middle = (l+r)/2; // middle position of [0..POINTS]
13 dir = (POINTS/2 - middle); // range +/-POINTS/2
14 SERVOSet(1, 128+dir); // 0=right 128=mid. 255=left
15 }
16
17 // plot distances and remove previous line
18 for (i=0; i<PLOT; i++)
19 { LCDLine(180+i,150-scan[SCL*i]/scale,180+i,150,BLUE);
20 LCDLine(180+i,150-scan[SCL*i]/scale,180+i,0,BLACK);
21 } // draw variable middle line
22 LCDLine(180+middle/SCL,0, 180+middle/SCL,150, RED);
23 } while (k!=KEY4);
24 }

Program 14.4: Auxiliary cone track functions in C

1 int getleftcone(int a[], int mid)
2 { int i;
3 for (i=mid-1; i>20; i--)
4 if (a[i] < 9000) return i; // cone detected !
5 return -1; // no cone
6 }
7
8 int getrightcone(int a[], int mid)
9 { int i;

10 for (i=mid+1; i<160; i++)
11 if (a[i] < 9000) return i; // cone detected !
12 return -1; // no cone
13 }
14
15 int getmax(int a[])
16 { int i, pos = 0;
17 for (i=1; i<POINTS; i++)
18 if (a[i] > a[pos]) pos = i;
19 return a[pos];
20 }

Autonomous Cars

180

14
The auxiliary functions getleftcone, getrightcone and getmax are listed in

Program 14.4. Function getleftcone receives the Lidar sensor array together
with the current middle position. The function then iterates from this middle
position towards the left until it finds the first obstacle – an object closer than
9,000mm. The function will then stop and return the object position. Function
getrightcone operates in the same fashion, only iterating from the middle
towards the right side. Function getmax is required for scaling the Lidar data
before plotting it to the screen.

The screenshot in Figure 14.7 now shows the final outcome of the cone-
track racing in action. This simulation could very well be made into a competi-
tion event in its own right.

14.6 Autonomous Road Vehicles
When leaving a specific segregated environment such as a race track, autono-
mous driving suddenly gets a lot more difficult. When driving on a campus
with pedestrians and bicycles or even on a public road with other cars, a
number of additional factors have to be taken into consideration.

The REV team of Kieran Quirke-Brown, Zhihui Lai, Xiangrui Kong, Tim
Tan, Jai Castle, Zack Wong, Kyle Carvalho and Yuchen Du developed soft-
ware for two autonomous shuttle buses using ROS-29 as the base system, as it
not only provides a communication middleware for software nodes, but also
provides a large number of well-tested algorithms for sensor data processing,
mapping, localization and navigation.

For navigation on the UWA campus, we use Lidar-based navigation pack-
ages. We are able to reliably detect buildings and use them for map generating
and localization using SLAM (Simultaneous Localization and Mapping). Fig-
ure 14.8 shows the shuttle bus on campus with a generated Lidar point cloud.

Figure 14.7: Simulated track racing of a Formula-SAE car

9 ROS-2 Documentation, online: https://docs.ros.org/en/rolling/

https://docs.ros.org/en/rolling/

Autonomous Road Vehicles

181

For navigation on public roads, we are not able to use same Lidar-based
navigation method, as buildings are either too far away from the road or still
missing in this development area. Instead we decided to implement a naviga-
tion system for waypoint navigation based on RTK-GPS (Real-Time Kinemat-
ics10) in combination with neural network-based image processing for lane
detection and Lidar-based collision avoidance. Figure 14.9 shows the shuttle
bus at Amberton Beach with its driven paths projected onto a map and a satel-

Figure 14.8: nUWAy-1 shuttle bus on campus with Lidar point cloud

Figure 14.9: nUWAy-2 shuttle at Amberton Beach; recorded driving paths

10 RTK uses a GPS base station which sends correction signals to the mobile GPS receiver
through a wireless link, in order to improve positioning accuracy.

Autonomous Cars

182

14
lite view. More details on autonomous vehicles can be found in [Bräunl et al.
2022]11 and [Bräunl 2022]12.

14.7 Tasks

11 T. Bräunl, K.Lim, T. Drage, K. Quirke-Brown, Z. Lai, Y. Du, K. Carvalho, Building an Au-
tonomous Drive System for an Electric Shuttle Bus, 21st Asia Pacific Automotive Engineer-
ing Conference APAC, SAE Australia, Oct. 2022, pp. (7)

12 T. Bräunl, Embedded Robotics – From Mobile Robots to Autonomous Vehicles with Rasp-
berry Pi and Arduino, 4th Ed., Springer Nature, Singapore, 2022

• Implement your version of the cone racing program using only a Lidar sensor.
• Implement your version of the cone racing program using only a camera sensor.
• Implement your version of the cone racing program using a combination of Lidar and

camera sensors.
• Extend your program to detect other cars and avoid collisions with them. Race two ro-

bot cars (with different programs) against each other in the same circuit.

183183

15
.

. .
OUTLOOK

f you have completed this book, we hope we have motivated you to use
EyeSim as well as real mobile robots or converted model cars to further
explore the whole range of mobile robot algorithms. For getting started,

EyeSim is an ideal testbed for traditional robotics algorithm development as
well as for deep learning systems.

First, reimplement the algorithms presented in this book, then dive deeper
into the world of robotics and carry out many more experiments on your own.
The EyeSim simulation environment gives you a chance to develop your robot
programs in a realistic, versatile and free environment. That said, we believe it
is essential to progress to building a physical robot. This does not have to be
expensive, as we have outlined at the beginning of this book. A robot can be
built quite cheaply by setting up an embedded controller, like the Raspberry Pi,
with a camera, display, two motors and some distance sensors – or alterna-
tively by converting a remote-controlled model car.

For larger robotics projects, advanced users should look at the more com-
plex Robot Operating System (ROS)1, originally developed by Willow
Garage. ROS is a free open source platform for Linux and provides a compre-
hensive library of high-level robotics software packages and utilities, such as
SLAM (Simultaneous Localization and Mapping), visualization (rviz), data
recording (rosbag) and simulation (Gazebo). ROS implementations exist for
the majority of commercially available research robots and can be used for
their program development as well as their simulation.

Have fun and enjoy your robot programming adventures!

1 Robot Operating System, http://www.ros.org

I

© Springer Nature Switzerland AG 2023

T. Bräunl, Mobile Robot Programming, https://doi.org/10.1007/978-3-031-32797-1_15

http://www.ros.org
https://doi.org/10.1007/978-3-031-32797-1_15
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32797-1_15&domain=pdf

185185

.
. .
APPENDIX

RoBIOS-7 Library Functions
Version 7.3, Jan. 2023-- RoBIOS is the operating system for the EyeBot controller.
The following libraries are available for programming the EyeBot controller in C or C++. Unless noted
otherwise, return codes are 0 when successful and non-zero if an error has occurred.

In application source files include #include "eyebot.h"
Compile application to include RoBIOS library $gccarm myfile.c -o myfile.o

• LCD Output
• Key Input
• Camera
• Image Processing
• System Functions
• Timer
• USB/Serial
• Audio
• Distance Sensors
• Servos and Motors
• V-Omega Driving Interface
• Digital and Analog I/O
• IR Remote Control
• Radio Communication
• Multitasking
• Simulation

LCD Output
int LCDPrintf(const char *format, ...); // Print string and arguments on LCD
int LCDSetPrintf(int row, int column, const char *format, ...); // Printf from given position
int LCDClear(void); // Clear the LCD display and display buffers
int LCDSetPos(int row, int column); // Set cursor position in pixels for subsequent printf
int LCDGetPos(int *row, int *column); // Read current cursor position
int LCDSetColor(COLOR fg, COLOR bg); // Set color for subsequent printf

© Springer Nature Switzerland AG 2023

T. Bräunl, Mobile Robot Programming, https://doi.org/10.1007/978-3-031-32797-1

https://doi.org/10.1007/978-3-031-32797-1

Appendix

186

int LCDSetFont(int font, int variation); // Set font for subsequent print operation
int LCDSetFontSize(int fontsize); // Set font-size (7..18) for subsequent operation
int LCDSetMode(int mode); // Set LCD Mode (0=default)
int LCDMenu(char *st1, char *st2, char *st3, char *st4); // Set menu entries for soft buttons
int LCDMenuI(int pos, char *string, COLOR fg, COLOR bg); // Set menu for i-th entry with color
int LCDGetSize(int *x, int *y); // Get LCD resolution in pixels
int LCDPixel(int x, int y, COLOR col); // Set one pixel on LCD
COLOR LCDGetPixel (int x, int y); // Read pixel value from LCD
int LCDLine(int x1, int y1, int x2, int y2, COLOR col); // Draw line
int LCDArea(int x1, int y1, int x2, int y2, COLOR col, int fill); // Draw filled/hollow rectangle
int LCDCircle(int x1, int y1, int size, COLOR col, int fill); // Draw filled/hollow circle
int LCDImageSize(int t); // Define image type for LCD (default QVGA;)
int LCDImageStart(int x, int y, int xs, int ys); // Def. start and size (def. 0,0; max_x, max_y)
int LCDImage(BYTE *img); // Print color image at screen start pos. and size
int LCDImageGray(BYTE *g); // Print gray image [0..255] black..white
int LCDImageBinary(BYTE *b); // Print binary image [0..1] white..black
int LCDRefresh(void); // Refresh LCD output

Font Names and Variations
HELVETICA (default), TIMES, COURIER
NORMAL (default), BOLD

Color Constants (COLOR is data type "int" in RGB order)
RED (0xFF0000), GREEN (0x00FF00), BLUE (0x0000FF), WHITE (0xFFFFFF), GRAY (0x808080), BLACK (0)
ORANGE, SILVER, LIGHTGRAY, DARKGRAY, NAVY, CYAN, TEAL, MAGENTA, PURPLE, MAROON, YELLOW,
OLIVE

LCD Modes
LCD_BGCOL_TRANSPARENT, LCD_BGCOL_NOTRANSPARENT, LCD_BGCOL_INVERSE,
LCD_BGCOL_NOINVERSE, LCD_FGCOL_INVERSE, LCD_FGCOL_NOINVERSE, LCD_AUTOREFRESH,
LCD_NOAUTOREFRESH, LCD_SCROLLING, LCD_NOSCROLLING, LCD_LINEFEED, LCD_NOLINEFEED,
LCD_SHOWMENU, LCD_HIDEMENU, LCD_LISTMENU, LCD_CLASSICMENU, LCD_FB_ROTATE,
LCD_FB_NOROTATION

Keys
int KEYGet(void); // Blocking read (and wait) for key press (returns KEY1...KEY4)
int KEYRead(void); // Non-blocking read of key press (returns NOKEY=0 if no key)
int KEYWait(int key); // Wait until specified key has been pressed
int KEYGetXY (int *x, int *y); // Blocking read for touch at any position, returns coordinates
int KEYReadXY(int *x, int *y); // Non-blocking read for touch at any position, returns coordinates

Key Constants
KEY1...KEY4, ANYKEY, NOKEY

Camera
int CAMInit(int resolution); // Change camera resolution (incl. IP resolution)
int CAMRelease(void); // Stops camera stream
int CAMGet(BYTE *buf); // Read one color camera image
int CAMGetGray(BYTE *buf); // Read gray scale camera image

187

For the following functions, the Python API differs slightly as indicated.
def CAMGet () -> POINTER(c_byte):
def CAMGetGray() -> POINTER(c_byte):

Resolution Settings
QQVGA(160×120), QVGA(320×240), VGA(640×480), CAM1MP(1296×730), CAMHD(1920×1080),
CAM5MP(2592×1944), CUSTOM (LCD only)
Variables CAMWIDTH, CAMHEIGHT, CAMPIXELS (=width*height) and CAMSIZE (=3*CAMPIXELS) will
be automatically set (BYTE is data type "unsigned char")

Constant sizes in bytes for color images and number of pixels
QQVGA_SIZE, QVGA_SIZE, VGA_SIZE, CAM1MP_SIZE, CAMHD_SIZE, CAM5MP_SIZE
QQVGA_PIXELS, QVGA_PIXELS, VGA_PIXELS, CAM1MP_PIXELS, CAMHD_PIXELS,
CAM5MP_PIXELS

Data Types
typedef QQVGAcol BYTE [120][160][3]; typedef QQVGAgray BYTE [120][160];
typedef QVGAcol BYTE [240][320][3]; typedef QVGAgray BYTE [240][320];
typedef VGAcol BYTE [480][640][3]; typedef VGAgray BYTE [480][640];
typedef CAM1MPcol BYTE [730][1296][3]; typedef CAM1MPgray BYTE [730][1296];
typedef CAMHDcol BYTE[1080][1920][3]; typedef CAMHDgray BYTE[1080][1920];
typedef CAM5MPcol BYTE[1944][2592][3]; typedef CAM5MPgray BYTE[1944][2592];

Image Processing
Basic image processing functions using the previously set camera resolution are included in the RoBIOS
library. For more complex functions see the OpenCV library.

int IPSetSize(int resolution); // Set IP resolution using CAM constants
int IPReadFile(char *filename, BYTE* img); // Read PNM file, fill/crop; 3:col., 2:gray, 1:bin
int IPWriteFile(char *filename, BYTE* img); // Write color PNM file
int IPWriteFileGray(char *filename, BYTE* gray); // Write gray scale PGM file
void IPLaplace(BYTE* grayIn, BYTE* grayOut); // Laplace edge detection on gray image
void IPSobel(BYTE* grayIn, BYTE* grayOut); // Sobel edge detection on gray image
void IPCol2Gray(BYTE* imgIn, BYTE* grayOut); // Transfer color to gray
void IPGray2Col(BYTE* imgIn, BYTE* colOut); // Transfer gray to color
void IPRGB2Col (BYTE* r, BYTE* g, BYTE* b, BYTE* imgOut);// Transform 3*gray to color
void IPCol2HSI (BYTE* img, BYTE* h, BYTE* s, BYTE* i);// Transform RGB image to HSI
void IPOverlay(BYTE* c1, BYTE* c2, BYTE* cOut);// Overlay c2 onto c1, all color images
void IPOverlayGray(BYTE* g1, BYTE* g2, COLOR col, BYTE* cOut); // Overlay gray images
COLOR IPPRGB2Col(BYTE r, BYTE g, BYTE b); // PIXEL: RGB to color
void IPPCol2RGB(COLOR col, BYTE* r, BYTE* g, BYTE* b);// PIXEL: color to RGB
void IPPCol2HSI(COLOR c, BYTE* h, BYTE* s, BYTE* i);// PIXEL: RGB to HSI for pixel
BYTE IPPRGB2Hue(BYTE r, BYTE g, BYTE b); // PIXEL: RGB to hue (0 for gray values)
void IPPRGB2HSI(BYTE r, BYTE g, BYTE b, BYTE* h, BYTE* s, BYTE* i); // PIXEL: RGB to hue

For the following functions, the Python API differs as in examples:
 edge = IPLaplace (gray_img)
 edge = IPSobel (gray_img)
 gray = IPCol2Gray(col_img)
 col = IPGray2Col(gray_img)

Appendix

188

 [h_gray, s_gray, i_gray] = IPCol2HSI(col_img)
 col = IPOverlay (col_source, col_overlay)
 col = IPOverlayGray(gray_source, gray_overlay, col_value)

System Functions
char * OSExecute(char* command); / Execute Linux program in background
int OSVersion(char* buf); // RoBIOS Version
int OSVersionIO(char* buf); // RoBIOS-IO Board Version
int OSMachineSpeed(void); // Speed in MHz
int OSMachineType(void); // Machine type
int OSMachineName(char* buf); // Machine name
int OSMachineID(void); // Machine ID derived from MAC address

Timer
int OSWait(int n); // Wait for n/1000 sec
TIMER OSAttachTimer(int scale, void (*fct)(void)); // Add fct to 1000Hz/scale timer
int OSDetachTimer(TIMER t); // Remove fct from 1000Hz/scale timer
int OSGetTime(int *hrs,int *mins,int *secs,int *ticks); // Get system time (ticks in 1/1000 sec)
int OSGetCount(void); // Count in 1/1000 sec since system start

USB/Serial Communication
int SERInit(int interface, int baud,int handshake); // Init communication (see HDT file)
int SERSendChar(int interface, char ch); // Send single character
int SERSend(int interface, char *buf); // Send string (Null terminated)
char SERReceiveChar(int interface); // Receive single character
int SERReceive(int interface, char *buf, int size); // Receive String (Null term.), returns size
int SERFlush(int interface); // Flush interface buffers
int SERClose(int interface); // Close Interface

Communication Parameters
Baudrate: 50 ... 230400
Handshake: NONE, RTSCTS
Interface: 0 (serial port), 1..20 (USB devices, names are assigned via HDT entries)

Audio
int AUBeep(void); // Play beep sound
int AUPlay(char* filename); // Play audio sample in background (mp3 or wave)
int AUDone(void); // Check if AUPlay has finished
int AUMicrophone(void); // Return microphone A-to-D sample value

Use Analog data functions to record microphone sounds (channel 8).

189

Distance Sensors
Position Sensitive Devices (PSDs) use infrared beams to measure distance and need to be calibrated in
HDT to get correct distance readings. LIDAR (Light Detection and Ranging) is a single-axis rotating laser
scanner.

int PSDGet(int psd); // Read distance value in mm from PSD sensor
int PSDGetRaw(int psd); // Read raw value from PSD sensor [1..6]
int LIDARGet(int distance[]); // Measure distances in [mm]; def. 360°, 360 points
int LIDARSet(int range, int tilt, int points); // range [1..360°], tilt angle down, number of points
PSD Constants
PSD_FRONT, PSD_LEFT, PSD_RIGHT, PSD_BACK
PSD sensors in these directions are connected to ports 1, 2, 3, 4.
LIDAR Constants
LIDAR_POINTS Total number of points returned
LIDAR_RANGE Angular range covered, e.g. 180°

Servos and Motors
Motor and Servo positions can be calibrated through HDT entries.
int SERVOSet(int servo, int angle); // Set servo [1...14] position to [0..255]
int SERVOSetRaw (int servo, int angle); // Set servo [1...14] position bypassing HDT
int SERVORange(int servo, int low, int high); // Set servo [1...14] limits in 1/100 sec
int MOTORDrive(int motor, int speed); // Set motor [1...4] speed in percent [-100 ...+100]
int MOTORDriveRaw(int motor, int speed); // Set motor [1...4] speed bypassing HDT
int MOTORPID(int motor, int p, int i, int d); // Set motor [1...4] PID controller values [1...255]
int MOTORPIDOff(int motor); // Stop PID control loop
int MOTORSpeed(int motor, int ticks); // Set controlled motor speed in ticks/100 sec
int ENCODERRead(int quad); // Read quadrature encoder [1...4]
int ENCODERReset(int quad); // Set encoder value to 0 [1...4]

V-Omega Driving Interface
This is a high-level wheel control for differential driving. It always uses motor 1 (left) and motor 2 (right).
Motor spinning directions, motor gearing and vehicle width are set in the HDT file.
int VWSetSpeed(int linSpeed, int angSpeed); // Set fixed linSpeed [mm/s] and [degrees/s]
int VWGetSpeed(int *linSspeed, int *angSpeed); // Read current speeds [mm/s] and [degrees/s]
int VWSetPosition(int x, int y, int phi); // Set robot position to x, y [mm], phi [degrees]
int VWGetPosition(int *x, int *y, int *phi); // Get robot position as x, y [mm], phi [degrees]
int VWStraight(int dist, int lin_speed); // Drive straight, dist [mm], lin. speed [mm/s]
int VWTurn(int angle, int ang_speed); // Turn on spot, angle [deg], ang. speed [degrees/s]
int VWCurve(int dist, int angle, int lin_speed); // Curve, dist [mm], angle [deg], lin. speed [mm/s]
int VWDrive(int dx, int dy, int lin_speed); // Drive x[mm] straight and y[mm] left, x>|y|
int VWRemain(void); // Return remaining drive distance in [mm]
int VWDone(void); // Non-blocking check whether drive is finished (1)
int VWWait(void); // Suspend thread until drive operation has finished
int VWStalled(void); // Number of stalled motor 0 (none), 1, 2, 3 (both)

All VW functions return 0 if OK and 1 if error (e.g. destination unreachable).

Appendix

190

For the following functions, the Python API differs as in examples:
 [v,w] = VWGetSpeed()
 [x,y,p] = VWGetPosition()

Digital and Analog Input/Output
int DIGITALSetup(int io, char direction); // Set IO line [1...16] to in, out, In pull-up, Jn pull-dn
int DIGITALRead(int io); // Read and return individual input line [1...16]
int DIGITALReadAll(void); // Read and return all 16 io lines
int DIGITALWrite(int io, int state); // Write individual output [1...16] to 0 or 1
int ANALOGRead(int channel); // Read analog channel [1...8]
int ANALOGVoltage(void); // Read analog supply voltage in [0.01 Volt]
int ANALOGRecord(int channel, int iterations); // Record analog data at 1kHz (non-blocking)
int ANALOGTransfer(BYTE* buffer); // Transfer previously recorded data; returns size

Default for digital lines: [1...8] are input with pull-up, [9...16] are output
Default for analog lines: [0...8] with 0: supply-voltage and 8: microphone
IO settings: i: input, o: output, I: input with pull-up res., J: input with pull-down res

IR Remote Control
These commands allow sending commands to an EyeBot via a standard infrared TV remote (IRTV). IRTV
models can be enabled or disabled via a HDT entry. Supported IRTV models are: Chunghop L960E Learn
Remote.

int IRTVGet(void); // Blocking read of IRTV command
int IRTVRead(void); // Non-blocking read, return 0 if nothing
int IRTVFlush(void); // Empty IRTV buffers
int IRTVGetStatus(void); // Checks to see if IRTV is activated (1) or off (0)

Defined Constants for IRTV buttons are:
IRTV_0 ... IRTV_9, IRTV_RED, IRTV_GREEN, IRTV_YELLOW, IRTV_BLUE,
IRTV_LEFT, IRTV_RIGHT, IRTV_UP, IRTV_DOWN, IRTV_OK, IRTV_POWER

Radio Communication
These functions require WiFi modules for each robot, one of them (or an external router) in DHCP mode,
all others in slave mode. Radio can be activated/deactivated via an HDT entry. The names of all partici-
pating nodes in a network can also be stored in the HDT file.

int RADIOInit(void); // Start radio communication
int RADIOGetID(void); // Get own radio ID
int RADIOSend(int id, char* buf); // Send string (Null terminated) to ID destination
int RADIOReceive(int *id_no, char* buf, int size); // Read bytes from ID source, returns rec. size
int RADIOCheck(void); // Check if message is waiting: 0 or 1 (non-block.)
int RADIOStatus(int IDlist[]); // Returns number of robots (incl. self) and ID list
int RADIORelease(void); // Terminate radio communication

191

ID numbers match last byte of robots’ IP addresses.

For the following functions, the Python API differs as in examples:
 [partnerid, buf] = RADIOReceive() # max 1024 Bytes
 [total, ids] = RADIOStatus() # max 256 entries

Multitasking
For Multitasking, simply use the pthread functions. A number of multitasking sample programs are includ-
ed in the demo/MULTI directory.

Simulation only
These functions will only be available when run in a simulation environment, in order to get ground truth
information and to repeat experiments with identical setup.

void SIMGetRobot (int id, int *x, int *y, int *z, int *phi);
void SIMSetRobot (int id, int x, int y, int z, int phi);
void SIMGetObject(int id, int *x, int *y, int *z, int *phi);
void SIMSetObject(int id, int x, int y, int z, int phi);
int SIMGetRobotCount()
int SIMGetObjectCount()

id=0 means own robot; id numbers run from 1...n

For the following functions, the Python API differs as in examples:
 [x,y,z,p] = SIMGetRobot(id)
 [x,y,z,p] = SIMGetObject(id)

Thomas Bräunl, Remi Keat and Marcus Pham, 1996-2023

	PREFACE
	CONTENTS
	1 ROBOT HARDWARE
	1.1 Actuators
	1.2 Sensors
	1.3 Processor and I/O
	1.4 Complete Robot
	1.5 Communication
	1.6 User Interface
	1.7 Simulation
	1.8 Tasks

	2 ROBOT SOFTWARE
	2.1 Software Installation
	2.2 First Steps in Python
	2.3 First Steps in C
	2.4 Driving a Square in Python
	2.5 Driving a Square in C or C++
	2.6 SIM Scripts and Environment Files
	2.7 Display and Input Buttons
	2.8 Distance Sensors
	2.9 Camera
	2.10 Robot Communication
	2.11 Multitasking
	2.12 Using an IDE
	2.13 Virtual Reality
	2.14 Tasks

	3 DRIVING ALGORITHMS
	3.1 Random Drive
	3.2 Driving to a Target Position
	3.3 Turn and Drive Straight
	3.4 Circle
	3.5 Dog Curve
	3.6 Splines
	3.7 Tasks

	4 LIDAR SENSORS
	4.1 Lidar Scans
	4.2 Corners and Obstacles
	4.3 Tasks

	5 ROBOT SWARMS
	5.1 Setting up a Swarm
	5.2 Follow Me
	5.3 Multiple Followers
	5.4 Tasks

	6 WALL FOLLOWING
	6.1 Wall Following Algorithm
	6.2 Simplified Wall Following Program
	6.3 Tasks

	7 ALTERNATIVE DRIVE SYSTEMS
	7.1 Ackermann Steering
	7.2 Omni-directional Drives
	7.3 Skid-Steering
	7.4 Chain Drives and Terrain
	7.5 Tasks

	8 BOATS AND SUBMARINES
	8.1 Autonomous Boats
	8.2 Autonomous Submarines
	8.3 Simulating Boats and Submarines
	8.4 Submarine Diving
	8.5 Submarine Movement
	8.6 Tasks

	9 MAZES
	9.1 Micromouse
	9.2 Wall Following
	9.3 Robustness and Control
	9.4 Maze Driving with Lidar
	9.5 Recursive Maze Exploration
	9.6 Flood-Fill
	9.7 Shortest Path
	9.8 Tasks

	10 NAVIGATION
	10.1 Navigation in Unknown Environments
	10.2 DistBug Algorithm
	10.3 Navigation in Known Environments
	10.4 Quadtrees
	10.5 Quadtree Implementation
	10.6 Shortest Path Algorithm
	10.7 Tasks

	11 ROBOT VISION
	11.1 Camera and Screen Functions
	11.2 Edge Detection
	11.3 OpenCV
	11.4 Color Detection
	11.5 Motion Detection
	11.6 Tasks

	12 LEARNING ROBOTS
	12.1 Starman
	12.2 Motion Model
	12.3 Genetic Algorithms
	12.4 Evolution Run
	12.5 Tasks

	13 TRAFFIC MODELS
	13.1 Autonomous Model Car Competitions
	13.2 Carolo-Cup
	13.3 Lane Keeping
	13.4 Intersections and Zebra Crossings
	13.5 Traffic Sign Recognition
	13.6 End-to-End Learning
	13.7 Tasks

	14 AUTONOMOUS CARS
	14.1 Electric Drive System
	14.2 Drive by Wire
	14.3 Sensors and Safety Systems
	14.4 Formula-SAE Autonomous
	14.5 Formula-SAE Simulation
	14.6 Autonomous Road Vehicles
	14.7 Tasks

	15 OUTLOOK
	APPENDIX

