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GenAl project lifecycle

> Scope >> Select

>> Adapt and align model

>> Application integration >

Define the
problem

Choose
model

Prompt
engineering

Fine-tuning

Align with
human
feedback

Evaluate

Optimize
and deploy
model for
inference

Augment
model and
build LLM-
powered
applications
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GenAl project lifecycle

> Scope >> Select >> Adapt and align model > Application integration >

Prompt
engineering
Optimize || | W8T
Define the Choose Fine-tuning Evaluate and deploy build LLM-
problem model model for
; Inference pow.erec.l

Align with applications
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Fine-tuning an LLM
with instruction prompts
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In-context learning (ICL) - zero shot inference

Prompt

Classify this review:

Sentiment:

®@ DeepLearning.Al

Model

Completion

Classify this review:
I loved this DVD!
Sentiment: Positive




In-context learning (ICL) - zero shot inference

Prompt

Classify this review:

Sentiment:

®@ DeepLearning.Al

Model

Completion

Classify this review:
I loved this DVD!
Sentiment: eived a
very nice book review




In-context learning (ICL) - one/few shot inference

Prompt Model Completion

'Classify this review:! 5 , | Classify this review:

i i I loved this DVD!

' Sentiment: | Sentiment: Positive
Classify this review: Classify this review:
I don’t like this I don’t like this
chair. <chalx. . .
Sentiment: Sentiment: Negative

One-shot or Few-shot Inference
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Limitations of in-context learning

Classify this review: A .

e In-context learning may
e not work for smaller
Classify this review: Even with models @

multiple

Sentiment: examples

e Examples take up space
Classify this review: . .

Y in the context window

Sentiment: \

Classify this review: Instead,tryﬁne-tunlng

Who would use this product? the m()del
Sentiment:

Context Window
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LLM fine-tuning at a high level

LLM pre-training

TEXT[. ..
TEXT[. ..
TEXT[. ..
TEXT[. ..
TEXT [

= TEXT[:::
TEXTI[. ..
TEXTI[. ..

TEXTI[. ..
TEXTI[. ..

Model

Pre-trained
LLM

et e e e b b e e B B

GB-TB-PB
of unstructured textual data
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LLM fine-tuning at a high level

LLM fine-tuning

Model Task-specific examples Model
TEXT[...], LABELJ[...]
Pre-trained TEXT[...], LABEL[...] Fine-tuned
N\ TEXT[...], LABELJ[...]
LLM TEXT[...], LABEL[...] LLM
TEXT[...], LABELJ[...]
GB-TB
of labeled examples for a specific
task or set of tasks
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LLM fine-tuning at a high level

LLM fine-tuning

Model Task-specific examples Model
PROMPT[...], COMPLETION]...]
\ | PROMPT[...], COMPLETIONJ...]
LLM PROMPT[...], COMPLETIONI...] LLM
PROMPT[...], COMPLETIONJ...]
\ Improved
GB-TB performance
of labeled examples for a specific Prompt-completion pairs
task or set of tasks
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Using prompts to fine-tune LLMs with instruction

LLM fine-tuning

Model @~ P =- Model
Classify this review: |
: Sentiment: :
Pre-trained L/ Fine-tuned
LLM I / Classify this review: | LLM
Sentiment:

Each prompt/completion pair includes a
specific “instruction” to the LLM
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Using prompts to fine-tune LLMs with instruction

LLM fine-tuning

Model Task-specific examples Model
PROMPT[...], COMPLETIONI...]
\ H PROMPT[...], COMPLETIONJ...]
LLM PROMPT[...], COMPLETIONJ...] LLM
PROMPT[...], COMPLETIONI...]
g
____________ B N ———
Summarize the following text:: Translate this sentence to...:
"[EXAMPLE TEXT] || [EXAMPLE TEXT]
[EXAMPLE COMPLETION] [EXAMPLE COMPLETION]
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Using prompts to fine-tune LLMs with instruction

LLM fine-tuning

Model Task-specific examples Model

PROMPT[...], COMPLETIONJ...]
\ H PROMPT[...], COMPLETIONJ...]
PROMPT[...], COMPLETIONJ...] LLM
PROMPT[...], COMPLETIONJ...]
Full fine-tuning Improved
updates all parameters performance
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Sample prompt instruction templates

Classification / sentiment analysis e e e

jinja: "Given the following review:\n{{review_body}}\npredict the associated rating\ A

\ | join('\\n- ") %} \n|||\niianswer_choices[star_rating-1]%}"

N /

Text generation
I o i N S L N R T R
jinja:, Generate a {§star ratingt}-star review:(l being lowest and 5 being highest)

| | | 1ireview_bodyt}

abou%
Y,

jinja: }Give a short sentence describing the following product review}\n{{review_body}}\
\ \n| IA\n3frevien-headHing ¥ -~~~ —————-=-------------—-—-—----=-

Source: https://github.com/bigscience-workshop/promptsource/blob/main/promptsource/templates/amazon_polarity/templates.yaml
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https://github.com/bigscience-workshop/promptsource/blob/main/promptsource/templates/amazon_polarity/templates.yaml

LLM fine-tuning process

LLM fine-tuning

Prepared instruction dataset Training splits
\ PROMPT[...], COMPLETIONJ...]
PROMPT[...], COMPLETION]...]
PROMPT[...], COMPLETION]...]
PROMPT[...], COMPLETION]...]
PROMPT[...], COMPLETION]...] Training
PROMPT[...], COMPLETION]...]
Validation
PROMPT[...], COMPLETIONJ...]
Test
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LLM fine-tuning process

LLM fine-tuning

Prepared instruction dataset

A

Prompt:

Classify this review:

Sentiment:

Model

Pre-trained
LLM

®@ DeepLearning.Al

LLM completion:

—>

Classify this review:

Label:

Classify this review:




LLM fine-tuning process

LLM fine-tuning

Prepared instruction dataset

A

Prompt:

Classify this review:

Sentiment:

Model

Pre-trained
LLM
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LLM completion:

—>

Classify this review:

Label:

Classify this review:

Y

Loss: Cross-Entropy

dWS

\-/‘7




LLM fine-tuning process

LLM fine-tuning

Prepared instruction dataset Training splits
\ PROMPT[...], COMPLETIONJ...]
PROMPT[...], COMPLETION]...]
PROMPT[...], COMPLETION]...]
PROMPT[...], COMPLETION]...]
PROMPT[...], COMPLETION]...] Training
PROMPT[...], COMPLETION]...] lidat
A validation_accurac
Validation - y
PROMPT[...], COMPLETIONJ...]
Test
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LLM fine-tuning process

LLM fine-tuning

Prepared instruction dataset Training splits

\ PROMPT[...], COMPLETIONJ...]
PROMPT[...], COMPLETIONJ...]
PROMPT[...], COMPLETIONJ...]
PROMPT[...], COMPLETIONJ...]

PROMPT[...], COMPLETIONJ...] Training
PROMPT[...], COMPLETIONJ...]

Validation
PROMPT[...], COMPLETIONJ...]

Test | test accuracy
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LLM fine-tuning process

Model Model
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Fine-tuning on a single task
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Fine-tuning on a single task

Model Single-task training dataset, Model
e.g. summarization

1
I_SEIEm_aE ize the following text:
[EXAMPLE TEXT]

[EXAMPLE COMPLETION]

Often, only 500-1000 exa mD

needed to fine-tune a single task

Pre-trained
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Catastrophic forgetting

e Fine-tuning can significantly increase the performance of amodel on a
specific task...

Before fine-tuning

Prompt Model Completion

Classify this review: __ » | Classify this review:
I loved this DVD!

Sentiment: Sentiment: eived a
very nice book review
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Catastrophic forgetting

e Fine-tuning can significantly increase the performance of a model on a
specific task...

After fine-tuning

Prompt Model Completion

Classify this review: __ » | Classify this review:
I loved this DVD!

Sentiment: Sentiment: POSITIVE
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Catastrophic forgetting

e ..butcanleadtoreductionin ability on other tasks

Before fine-tuning

Prompt

Model

What is the name of
the cat?

®@ DeepLearning.Al

Completion

What i1is the name of
the cat?

Charlie the cat roamed
the garden at night.
Charlie




Catastrophic forgetting

e ..butcanleadtoreductionin ability on other tasks

After fine-tuning
Prompt

Model

What is the name of
the cat?

®@ DeepLearning.Al

Completion

What 1s the name of

the cat?
Charlie the cat roamed

the garden at night.
The garden was
positive.




How to avoid catastrophic forgetting

e First note that you might not have to!
e Fine-tune on multiple tasks at the same time
e Consider Parameter Efficient Fine-tuning (PEFT)
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Multi-task, instruction fine-tuning
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Multi-task, instruction fine-tuning

Model Instruction fine-tune on many tasks

Pre-trained
LLM

[EXAMPLE TEXT] coe
[EXAMPLE COMPLETION]
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Multi-task, instruction fine-tuning

Model Instruction fine-tune on many tasks Model

Pre-trained
LLM

Gany examples of each [EXAMPLE TEXT]

needed for training [EXAMPLE COMPLETION]
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Instruction fine-tuning with FLAN

e FLAN models refer to a specific set of instructions used to perform
instruction fine-tuning

“The metaphorical dessert to the main course of
pretraining”

FLAN

® DeepLearning.Al



Instruction fine-tuning with FLAN

e FLAN models refer to a specific set of instructions used to perform
instruction fine-tuning

| FLAN " BALM FLAN-PALM
(Fine-tuned
LAnguage Net)
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FLAN-T5: Fine-tuned version of pre-trained T5 model

e FLAN-T5Iisagreat, general purpose, instruct model

4 N

- Commonsense Reasoning,
- Question Generation,

- Closed-book QA,

- Adversarial QA,

- Extractive QA

TO-SF

55 Datasets

14 Categories
193 Tasks

A /

@© Deeplearning.Al

4 N

- Natural language inference,
- Code instruction gen,

- Code repair

- Dialog context generation,
- Summarization (SAMSum)

Muffin

69 Datasets
27 Categories

80 Tasks

< >

/ CoT (reasoning) \

- Arithmetic reasoning,

- Commonsense reasoning
- Explanation generation,

- Sentence composition,

- Implicit reasoning,

9 Datasets
1 Category

9 Tasks

< >

Source: Chung et al. 2022, “Scaling Instruction-Finetuned Language Models”

/Natural Instructions\

- Cause effect classification,
- Commonsense reasoning,
- Named Entity Recognition,
- Toxic Language Detection,
- Question answering

372 Datasets
108 Categories

K 1554 Tasks /




FLAN-T5: Fine-tuned version of pre-trained T5 model

e FLAN-T5Iisagreat, general purpose, instruct model

4 N

- Commonsense Reasoning,
- Question Generation,

- Closed-book QA,

- Adversarial QA,

- Extractive QA

TO-SF

55 Datasets

14 Categories
193 Tasks

A /
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a

<

Muffin

- Natural language inference,
- Code instruction gen,
- Code repair

‘- Summarization (SAMSum) \

69 Datasets

27 Categories
80 Tasks

N

/ CoT (reasoning) \

- Arithmetic reasoning,

- Commonsense reasoning
- Explanation generation,

- Sentence composition,

- Implicit reasoning,

9 Datasets
1 Category

4

9 Tasks

< 4

Source: Chung et al. 2022, “Scaling Instruction-Finetuned Language Models”

/Natural Instructions\

- Cause effect classification,
- Commonsense reasoning,
- Named Entity Recognition,
- Toxic Language Detection,
- Question answering

372 Datasets
108 Categories

K 1554 Tasks /




SAMSum: A dialogue dataset

Sample prompt training dataset (samsum) to fine-tune FLAN-T5 from pretrained T5

= Datasets: samsum Tasks: ™ Summarization Languages: @ English

summary (string)

dialogue (string)
n = 4 2 . |

AHanda; ¥ bakeq cookies. Do you WaTt SOWEE JderLy: Sire: "Amanda baked cookies and will bring Jerry some tomorrow."
Amanda: I'll bring you tomorrow :-)

"Olivia: Who are you voting for in this election? Oliver: "Olivia and Olivier are voting for liberals in this
Liberals as always. Olivia: Me too!! Oliver: Great” election.

"Tim: Hi, what's up? Kim: Bad mood tbh, I was going to do "Kim may try the pomodoro technique recommended by Tim to

lots of stuff but ended up procrastinating Tim: What did.. get more stuff done.”

Source: https://huggingface.co/datasets/samsum, https://github.com/google-research/FLAN/blob/2c79a31/flan/v2/templates.py#L3285
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https://huggingface.co/datasets/samsum
https://github.com/google-research/FLAN/blob/2c79a31/flan/v2/templates.py#L3285

Sample FLAN-T5 prompt templates

"samsum": [

II("{dialogue}\n\Br'iefly summarize that dialogue.", "{summary}"),

("Here is a dialogue:\n{dialogue}\n\nWrite a short summary!",

B L U

| ("Dialogue:\n{dialogue}\n\nWhat is a summary of this dialogue?",
"{summary}"), I

("{dialogue}\n\nWhat was that dialogue about, in two sentences or less?",
"{summary}"),

("Here is a dialogue:\n{dialogue}\n\nWhat were they talking about?",
"{summary}"),

("Dialogue:\n{dialogue}\nWhat were the main points in that "
__‘conversation?®, “{summary}"), = \

|("Dialogue:\n{dialogue}\nWhat was going on in that conversation?”,

"{summary}"), I

® DeepLearning.Al




Sample FLAN-T5 prompt templates

"samsum": [

|("{dialogue}\h\Brief1y summarize that dialogue.",l"{summary}")J
("Here is a dialogue:\n{dialogue}\n\nWrite a short summary!",
"{summary}"),
("Dialogue:\n{dialogue}\n\nWhat is a summary of this dialogue?",
"{summary}"),
("{dialogue}\n\nWhat was that dialogue about, in two sentences or less?",
"{summary}"),
("Here is a dialogue:\n{dialogue}\n\nWhat were they talking about?",
"{summary}"),
("Dialogue:\n{dialogue}\nWhat were the main points in that "
"conversation?", "{summary}"),
("Dialogue:\n{dialogue}\nWhat was going on in that conversation?",

"{summary}"),

® DeepLearning.Al




Improving FLAN-T5’s summarization capabilities

Hi there! How can | help

you today?
@ | need to return a pair of
jeans that | purchased
———
Of course, I'd be happy @
to help you. When did
you buy your item?
= T
g Two weeks ago.
S —

T

® DeepLearning.Al




Improving FLAN-T5’s summarization capabilities

Hi there! How can | help

you today?
e | need to return a pair of Goal: Sum.manze
jeans that | purchased conversations to
. identify actions to
Of course, I'd be happy T)
to help you. When did take
you buy your item?
2
g Two weeks ago.
W@)

® DeepLearning.Al




Improving FLAN-T5’s summarization capabilities

Further fine-tune FLAN-T5 with a domain-specific instruction dataset (dialogsum)

® DeepLearning.Al

= Datasets: @ knkarthick/dialogsum T

Tasks: B

Language Creators:

¢ Dataset card ’|

Summarization &

Q like 13

Text2Text Generation >  Text Generation

expert-generated  Annotations Creators:  expert-generated

Filesand versions ¢ Community

® Dataset Preview

Split

train (12.5k rows)

id (string)

dialogue (string)

"#fPersonldt: Hi, Mr. Smith. I'm Doctor Hawkins. Why are

Languages:

Source Datasets:

@ English  Multilinguality:  monolingual

i

original  License: @ mit

summary (string)

"Mr. Smith's getting a check-up, and Doctor Hawkins

train_0 you here today? #Person2#: I found it would be a good.. advises him to have one every year. Hawkins'll give some..
AR "#fPersonli#: Hello Mrs. Parker, how have you been? "Mrs Parker takes Ricky for his vaccines. Dr. Peters

= #Person2i#: Hello Dr. Peters. Just fine thank you. Ricky.. checks the record and then gives Ricky a vaccine."
"train_2" "#fPersonlit: Excuse me, did you see a set of keys? "#fPersonl#'s looking for a set of keys and asks for

#Person2i#: What kind of keys? #Personl#: Five keys and a
small foot ornament. #Person2#: What a shame! I didn't
see them. #Personli#: Well, can you help me look for it?
That's my first time here. #Person2#: Sure. It's my

pleasure. I'd like to help you look for the missing keys.

#Personli#: It's very kind of you. #Person2i#: It's not a
big deal.Hey, I found them. #Personl#: Oh, thank God! I
don't know how to thank you, guys. #Person2#: You're
welcome. "

#Person2#'s help to find them."

Size Categori¢




Example support-dialog summarization

Prompt (created from template)

L;ummarize the following conversation.\
ommy: Hello. My name is Tommy Sandals, I have a reservation.

Mike: May I see some identification, sir, please?

Tommy: Sure. Here you go.

Mike: Thank you so much. Have you got a credit card, Mr.
Sandals?

Tommy: I sure do.

Mike: Thank you, sir. You'll be in room 507, nonsmoking,
queen bed.

Tommy: That's great, thank you!

Mike: Enjoy your stay!

Source: https://hugqgingface.co/datasets/knkarthick/dialogsum/viewer/knkarthick--dialogsum/
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https://huggingface.co/datasets/knkarthick/dialogsum/viewer/knkarthick--dialogsum/

Summary before fine-tuning FLAN-T5 with our dataset

Prompt (created from template) Model Completion (Summary)

Summarize the following —» Tommy Sandals has a reservation
conversation. _ for a room at the Venetian
Tommy: Hello. My name 1is i

Tommy Sandals, I have a Hotel in Las Vegas.

reservation.

Mike: May I see some

Adequate completion, but does not
match human baseline.

Tommy: That's great, thank i

you! Human baseline summary:

Mike: Enjoy your stay! Tomy Sandals haS gOt a
reservation. Mike asks for his
identification and credit card

and helps his check-in.

® DeepLearning.Al




Summary before fine-tuning FLAN-T5 with our dataset

Prompt (created from template) Model Completion (Summary)

Summarize the following | Tommy Sandals has _:z age ation
1 — .
conversation. | for a room at the
Tommy: Hello. My name 1is i
Tommy Sandals, I have a Hotel in Las Vegas.

reservation.

Mike: May I see some .
Adequate completion, but does not

match human baseline.

Tommy: That's great, thank i

you! Human baseline summary:

Mike: Enjoy your stay! Tomy Sandals haS gOt a
reservation. Mike asks for his
identification and credit card

and helps his check-in.
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Summary before fine-tuning FLAN-T5 with our dataset

Prompt (created from template) Model Completion (Summary)
Summarize the following —» Tommy Sandals has a reservation
: —_— .
conversation. _ for a roaom._:z he _Venetian

Tommy: Hello. My name 1is i

Tommy Sandals, I have a Hotel in
reservation.

Mike: May I see some

Adequate completion, but does not
match human baseline.

Tommy: That's great, thank i

you! Human baseline summary:

Mike: Enjoy your stay! Tomy Sandals haS gOt a
reservation. Mike asks for his
identification and credit card

and helps his check-in.
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Summary after fine-tuning FLAN-T5 with our dataset

Prompt (created from template) Model Completion (Summary)

Summarize the following
conversation.

Tommy Sandals has a

. FLAN-T5 reservation and checks 1in
Tommy: Hello. My name 1is : _ _ _
Tommy Sandals, I have a (Fine-tuned) showing his ID and credit
reservation. card. Mike helps him to

Mike: May I see some check in and approves his

reservation.
Tommy: That's great, thank Better summary,
you! more-closely matches

Mike: Eni tay! .
ike: Enjoy your stay human baseline.

® DeepLearning.Al




Fine-tuning with your own data

Hi there! How can | help

you today?
@ | need to return a pair of
jeans that | purchased
———
Of course, I'd be happy @
to help you. When did
you buy your item?
= T
g Two weeks ago.
S —

T
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Model evaluation metrics
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LLM Evaluation - Challenges

Correct Predictions

Accuracy =
Total Predictions

®@ DeepLearning.Al



LLM Evaluation - Challenges

“Mike really loves drinking tea.” “Mike adores sipping tea.”
“Mike does-j rink coffee. “Mike does drink coffee.”

a

/ \ :
- 9 ©
AL

f\ o - )
i": PN 3
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LLM Evaluation - Metrics

BLEU
SCORE
e Used fortext summarization e Usedfortexttranslation
e Comparesasummary toone e Compares to human-generated
or more reference summaries translations
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LLM Evaluation - Metrics - Terminology

n-gram
4 A A
The dog lay on the rug as | sipped a cup of tea.
—— ~~
bigram unigram

®@ DeepLearning.Al



LLM Evaluation - Metrics - ROUGE-1

Ref h ;
eference (human; ROUGE-1  unigram matches 4
- : : = —— =10
Recall unigrams in reference 4
Generated output:
ROUGE-1 _ unigram matches _ 4 _ 0.8
5 ' Precision: unigramsinoutput 5 '
ROUGE-1 _ , precision x recall _ 5 08 0.89
F1: precision + recall - 1.8
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LLM Evaluation - Metrics - ROUGE-1

Ref h ;
eference (human; ROUGE-1  unigram matches 4
- : : = —— =10
Recall unigrams in reference 4
Generated output:
ROUGE-1 _ unigram matches _ 4 _ 0.8
5 — ' Precision: unigramsinoutput 5 '
ROUGE-1 _ , precision x recall _ 5 08 0.89
F1: precision + recall - 1.8
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LLM Evaluation - Metrics - ROUGE-2

Reference (human):

[ It is } [ IS cold } [ cold outside }

Generated output:

[ It is J [ IS very J [ very cold J [ cold outside J
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LLM Evaluation - Metrics - ROUGE-2

-

Reference (human):

It is H s cold }

r cold outside 1

Generated output:

It is M IS very 1

~

i very cold M cold outside 1

)

® DeeplLearning.Al

ROUGE-2
Recall:

ROUGE-2
Precision:

ROUGE-2
F1:

bigram matches

bigrams in reference

bigram matches

bigrams in output

5 precision X recall
precision + recall

2

0.335

1.17

=0.57




LLM Evaluation - Metrics - ROUGE-L

Reference (human):

It Is cold outside.

Generated output:

It Is very cold outside.

Longest common subsequence (LCS):

It is }

i cold outside } 2

®@ DeepLearning.Al



LLM Evaluation - Metrics - ROUGE-L

Ref h ;
eference (human) ROUGE-L LCS(Gen, Ref) 2
. = . , - = =05
Recall: unigrams in reference 4
Generated output:
ROUGE-L _ LCS(Gen, Ref) - 2 _ou4
L ' Precision: unigramsinoutput 5 '
ROUGE-L _ precision x recall _ 5 02 0.44
F1: precision + recall - 09 ™
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LLM Evaluation - Metrics - ROUGE-L

Ref h ;
eference (human) ROUGE-L LCS(Gen, Ref) 2
_ = . : = — =0.5
Recall: unigrams in reference 4
Generated output:
ROUGE-L _ LCS(Gen, Ref) _ 2 _ou4
S  Precision: unigrams in output 5 '
LCS:
Longest common subsequence o
ROUGE-L _ » precision x recall _ 5 0.2 - 0.44
F1- precision + recall - 0.9
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LLM Evaluation - Metrics - ROUGE hacking

Reference (human):

It Is cold outside.

Generated output:

cold cold cold cold
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LLM Evaluation - Metrics - ROUGE clipping

Reference (human): .
ROUGE-1 _ unigram matches - 4
Precision unigrams inoutput 4

Generated output:
Modified _  clip(unigram matches) 1 _go5

\ . precision unigramsinoutput 4 '
Generated output: , , ,
Modified _  clip(unigram matches) 4 _ 10
precision unigrams in output 4 Y N
2/
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LLM Evaluation - Metrics

BLEU
SCORE
e Used fortext summarization e Usedfortexttranslation
e Comparesasummary toone e Compares to human-generated
or more reference summaries translations

®@ DeepLearning.Al



LLM Evaluation - Metrics - BLEU

BLEU metric = Avg(precision across range of n-gram sizes)

Reference (human):

| am very happy to say that | am drinking a warm cup of tea.

Generated output:

| am very happy that | am drinking a cup of tea. - BLEU 0.495

| am very happy that | am drinking a warm cup of tea. - BLEU 0.730

| am very happy to say that | am drinking a warm tea. - BLEU 0.798

| am very happy to say that | am drinking a warm cup of tea. - BLEU 1.000
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LLM Evaluation - Metrics

BLEU
SCORE
e Used fortext summarization e Usedfortexttranslation
e Comparesasummary toone e Compares to human-generated
or more reference summaries translations

®@ DeepLearning.Al



Benchmarks
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Evaluation benchmarks

"IGLUE  $IsuperLUE XHELM

MMLU (Massive Multitask
Language Understanding) BIG-bench H'I
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GLUE
*I1GLUE

The tasks included in SuperGLUE benchmark:

Corpus |Train| |Test| Task Metrics Domain
Single-Sentence Tasks
CoLA 8.5k 1k  acceptability Matthews corr. misc.
SST-2 67k 1.8k  sentiment acc. movie reviews
Similarity and Paraphrase Tasks
MRPC 3.7k 1.7k paraphrase acc./F1 news
STS-B 7k 1.4k  sentence similarity = Pearson/Spearman corr. misc.
QQP 364k 391k paraphrase acc./F1 social QA questions
Inference Tasks
MNLI 393k 20k NLI matched acc./mismatched acc.  misc.
QNLI 105k 5.4k QA/NLI acc. Wikipedia
RTE 2.5k 3k NLI acc. news, Wikipedia
WNLI 634 146  coreference/NLI acc. fiction books

Source: Wang et al. 2018, “GLUE: A Multi-Task Benchmark and Analysis Platform for Natural
Language Understanding”
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SuperGLUE
o3 SuperGLUE

The tasks included in SuperGLUE benchmark:

Corpus |Train| |Dev| |Testf Task Metrics Text Sources

BoolQ 9427 3270 3245 QA acc. Google queries, Wikipedia
CB 250 57 250 NLI acc./F1 various
COPA 400 100 500 QA acc. blogs, photography encyclopedia

MultiRC 5100 953 1800 QA F1.,/EM various
ReCoRD 101k 10k 10k QA F1/EM news (CNN, Daily Mail)

RTE 2500 2738 300 NLI acc. news, Wikipedia
WiC 6000 638 1400 WSD acc. WordNet, VerbNet, Wiktionary
WSC 554 104 146 coref. acc. fiction books

Source: Wang et al. 2019, “SuperGLUE: A Stickier Benchmark for General-Purpose Language
Understanding Systems"”
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GLUE and SuperGLUE leaderboards

3 SuperGLUE B Paper </> Code = Tasks 1 FAQ YK Diagnostics «/4 Submit %) Login

Rank Name

1 Microsoft Alexand Leaderboard Version: 2.0
2 JDExplore d-team
Rank Name Model URL Score BoolQ CB COPA MultiRC ReCoRD RTE WIC WSC AX-b AX-g
3 Microsoft Alexandg
% DT 1 JDExplore d-team Vega v2 G' 91.3 905 98.6/09.2 99.4 88.2/62.4 94.4/939 960 77.4 986 -0.4 100.0/50.0
5 ERNIETeam-Bail («fs 2 Liam Fedus ST-MoE-32B (7' 912 924 969/080 992 80.6/65.8 95.1/944 935 777 966 723 96.1/94.1
6 AllceMind & DIRL 3 Microsoft Alexander v-team  Turing NLR v5 (7' 909 920959076 0982 88.4/63.0 96.4/959 941 771 973 67.8 93.3/955
7 DeBERTa Team - | )
4 ERNIE Team - Baidu ERNIE 3.0 (4" 906 91.0986/09.2 07.4 88.6/63.2 94.7/942 926 77.4 973 686 92.7/947
8 HFLIFLYTEK
5 YiTay PalM 540B (7' 904 0910 944/060 99.0 88.7/63.6 94.2/93.3 941 77.4 959 729 955/90.4
9 PING-AN Omni-Si 7 :
o 6 Zimuiwang T5 + UDG, Single Model (Google Brain) (7' 904 914958076 98.088.3/63.0 94.2/935 930 77.9 966 69.1 927/91.9
10 T5 Team - Google S,
o= 7 DeBERTa Team - Microsoft DeBERTa / TuringNLRv4 (4" 903 904957/07.6 98.4882/63.7 945041 932 775 959 667 93.3/93.8

Disclaimer: metrics may not be up-to-date. Check https://super.gluebenchmark.com and https://gluebenchmark.com/leaderboard for the latest.
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https://super.gluebenchmark.com
https://gluebenchmark.com/leaderboard

Benchmarks for massive models

Massive
Multitask
Language

Understanding

(MMLU)

2021

Source: Hendrycks, 2021. “Measuring Massive
Multitask Language Understanding”
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Benchmarks for massive models

Massive
Multitask
Language

Understanding

(MMLU)

Source: Hendrycks, 2021. “Measuring Massive Source: Suzgun et al. 2022. “Challenging BIG-Bench
Multitask Language Understanding” tasks and whether chain-of-thought can solve them"
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Holistic Evaluation of Language Models (HELM)

I ' E L M Anthropic- Cohere Cohere Cohere Coh
4 J1-Jumbo J1-Grande J1-Large LM BLOOM TOpp XL Large Medium Sm

NaturalQuestions (open) v v v v v v v

NaturalQuestions (closed) v v v v v v v ‘/ v

MetriCS: BoolQ v v v v 4 v v v v
NarrativeQA v v v v v v v v v

1. Accuracy S = v v v | v v v, v v,
2. Calibration g HellaSwag vV | Vv I v IV v | v v v v
3. Robustness emm  OpenBookOA v | v | Vv |V |V |V |V |V |V
4. Fairness e e Howe | W ] W | W | & Jof | af | W
. S mvw v v v vV | Vv v v v v

5. B|aS d’ MS MARCO V V V ‘/ v
6. Toxicity é)’ TREC v | v v | v | v
/. Efficiency XEUM v | v |V |V |V |V |V |V |V
CNNDM v v v v | V v v v v

DB v v v v v v v v v

CivilComments v v v v v v v ‘/ v

RAFT VvV | Vv [ Vv VI Vv Vv v | v | v
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Holistic Evaluation of Language Models (HELM)

Center for
x poewchon EAELM Models Scenarios Results Raw runs
Models
Core scenarios
The scenarios where we evaluate all the models.
[ Accuracy | Calibration | Robustness | Fairness | Efficiency | General information | Bias | Toxicity | Summarization metrics | JSON ]
Accuracy
Model/adapter  Mean MMLU BoolQ NarrativeQA  NaturalQuestions  NaturalQuestions  QuAC HellaSwag
win - EM - EM -1 (closed-book) - (open-book) - F1 -1 -EM 1
rate 1 9 i [ sort] F11 [sort] M [sort] [ sort] [ sort]
[ sort ] [ sort] [sort]
Cohere 0.93 0.452 0.856 0.752 0.372 0.76 0.432 0.811
Command
beta (52.4B)
text-davinci- 0.93 0.568 0.877 0.727 0.383 0.713 0.445 0.815
002
text-davinci- 0.898 0.569 0.881 0.727 0.406 0.77 0.525 0.822

OpenbookQA
-EM 1
[ sort]

0.582

0.594

0.646

v0.2.2 (last updated 2023-03-19)

TruthfulQA
-EM 1
[ sort]

0.269

0.61

0.593

Disclaimer: metrics may not be up-to-date. Check https://crfm.stanford.edu/helm/latest for the latest.
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Key takeaways
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LLM fine-tuning process

LLM fine-tuning LLM completion:

Training dataset
Model

J‘
% Pre-trained

LLM Label:
Prompt:

Classify this review:

Y

Loss: Cross:

Sentiment:

DeeplLearning.Al aws




LLM fine-tuning process

LLM fine-tuning

LLM completion:
Training dataset
Model _—
1\
= - -
Updated
LLM Label:

Prompt:

Classify this review:

Sentiment:

Loss: Cross-Entropy

DeeplLearning.Al aws




LLM fine-tuning process

LLM fine-tuning

Prepared instruction dataset

A

Prompt:

Classify this review:

Sentiment:

Model

Pre-trained
LLM

®@ DeepLearning.Al

LLM completion:

—>

Classify this review:

Label:

Classify this review:




Parameter-

efficient
Fine-tuning (PEFT)
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Full fine-tuning of large LLMs is challenging

“ R

Temp memory

Forward
Activations

Gradients

Optimizer states

> 12-20x
weights

Trainable
Weights
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Parameter efficient fine-tuning (PEFT)

Small number of
trainable layers

LLM with most layers E

frozen
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Parameter efficient fine-tuning (PEFT)

New trainable

layers
Less prone to
catastrophic forgetting
LLM Other
* | . components
| |
I " Trainable
| ' weights
F Weight
LLM with additional rozen YWeights *
layers for PEFT
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Full fine-tuning creates full copy of original LLM per task

GBs

{QAﬁne tune J >
/ GBS

GBs
Summarize .
fine tune
\ GBS
Generate fine . Generate
tune LLM
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PEFT fine-tuning saves space and is flexible

PEFT weights
{QA PEFT } > | | MBs
GBs /
Summarize Generate
LLM {PEFT } > || Mes LLM
\ Generate
{PEFT } o s
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PEFT Trade-offs

Parameter Efficiency

Memory Efficiency / Training Speed

Model Performance Inference Costs
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PEFT methods

Reparameterization

Reparameterize model
weights using a low-rank
representation

Source: Lialin et al. 2023, “Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning’,
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PEFT methods

Reparameterization

Additive

Reparameterize model
weights using a low-rank
representation

LoRA

Add trainable layers or
parameters to model

Adapters

Soft Prompts
Prompt Tuning

Source: Lialin et al. 2023, “Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning’,

® DeepLearning.Al




Low-Rank Adaptation of Large Language
Models (LoRA)
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Transformers: recap

Softmax
output
4 | )
| = ] =
J'aime } apprentissage |
automatique f A
- Decoder
Encoder
\ 4

o J \_ J
2345 3425 3853 T T
[ Embedding ] [ Embedding ]

T
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Transformers: recap

Softmax
output
(" I )
o § Feed forward
5 network
4 I )
Feed forward ®
network - Decoder
Encoder -
Self-attention L ) C ) Self-attention
T
Embedding Embedding

T
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LoRA: Low Rank Adaption of LLMs

1. Freeze most of the original LLM weights.

Encoder

Self-attention

Weights *

appliedto [ — ;

embedding \ /

vectors
{ Embedding ]

A

®@ DeepLearning.Al



LoRA: Low Rank Adaption of LLMs

1. Freeze most of the original LLM weights.

ENEE2IE; 2. Inject 2 rank decomposition matrices
Self-attention *‘ 3. Train the weights of the smaller matrices
;I .
A I Rank ris small
N / dimension,

typically 4,8... 64

{ Embedding ]

A
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LoRA: Low Rank Adaption of LLMs

1. Freeze most of the original LLM weights.

Encoder 2. Inject 2 rank decomposition matrices

3. Train the weights of the smaller matrices

Self-attention

* T ﬂ Steps to update model for inference
N / 1.  Matrix multiply the low rank matrices
B * ﬂ A = | AxB
{ Embedding ]
A 2. Addto original weights

¥+ AxB
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LoRA: Low Rank Adaption of LLMs

Encoder
Self-attention *‘
Updated
weights * T AXB
\ /

{ Embedding ]

A

1. Freeze most of the original LLM weights.

2. Inject 2 rank decomposition matrices

3. Train the weights of the smaller matrices

Steps to update model for inference:
1. Matrix multiply the low rank matrices

B *HA= AxB

2. Addto original weights

¥+ AxB
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Concrete example using base Transformer as reference

Use the base Transformer model presented by Vaswani et al. 2017:
e Transformer weights have dimensionsdx k=512 x 64
o S0512x64=32,768 trainable parameters

T
64
|

512

In LoRA with rank r = 8:
e Ahasdimensionsrxk=8x64=512 parameters

e Bhasdimensiondxr=512x8=4,096 trainable parameters
7 8
64 | - 512 86% reduction in parameters

g to train!
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LoRA: Low Rank Adaption of LLMs

1. Traindifferent rank decomposition
Encoder matrices for different tasks

2. Update weights before inference

Self-attention

Weights TaskA o
appliedto [ — ; * ﬂ -
embedding - /

vectors * +

{ Embedding ]

A
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LoRA: Low Rank Adaption of LLMs

1. Traindifferent rank decomposition

Encoder matrices for different tasks
Self-attention )‘ 2. Update weights before inference
Updated Task A ' . B
weights for * T * ﬂ =
task A - J
£+
{ Embedding ] Task B | | ﬂ
1 k —
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LoRA: Low Rank Adaption of LLMs

1. Traindifferent rank decomposition

Encoder matrices for different tasks
Self-attention )‘ 2. Update weights before inference
Updated Task A ' . B
weights for * T * ﬂ =
task B - J
£+
{ Embedding ] Task B | | ﬂ
1 k —
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Sample ROUGE metrics for full vs. LORA fine-tuning

Base model Full fine-tune
ROUGE ROUGE

Dialog
summarization

flan_t5_base
— {‘rougel’: 0.2334,
‘rouge2’ : 0.0760,
‘rougelL’ : 0.2014,
Baseline ‘rougeLsum’ : 0.2015}

Score
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Sample ROUGE metrics for full vs. LORA fine-tuning

Base model Full fine-tune LoRA fine tune
ROUGE +80.63% ROUGE -3.20% ROUGE

» flan_t5_base_instruct_full
—»{'rougel’: 0.4216, flan_t5_base_instruct_lora

‘rouge?2’ : 0.1804, ‘rougel’ : 0.4081,
‘“rougelL’ : 0.3384, ‘rouge2’ : 0.1633,
‘rougelLsum’: 0.3384} ‘rougelL’ : 0.3251,

Dialog rougeLsum’: 0.3249}

summarization

flan_t5_base
— {‘rougel’: 0.2334,
‘rouge2’ : 0.0760,
‘rougelL’ : 0.2014,
Baseline ‘rougeLsum’ : 0.2015}

Score
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Choosing the LoRA rank

| Rank 7 ||| valloss || BLEU [ NIST ~METEOR |ROUGEL| CIDEr e Effectiveness of higher rank
1 | 123 6872 87215 04565  0.052 24329
2 1.21 69.17 87413 0.4590 0.7052 2.4639
4 1.18 7038 8.8439 0.4689 0.7186 2.5349 appears to plateau
8 117 69.57 8.7457 0.4636 0.7196 2.5196
16 | 1.16 69.61 87483 0.4629 0.7177 2.4985 : :
32 | 1.16 69.33 87736 0.4642 0.7105 2.5255 o Relationship between rank
64 | 1.16 69.24 87174 0.4651 0.7180 2.5070 ,
128 | 1.16 68.73 86718 0.4628 0.7127 2.5030 and dataset size needs more
256 || 1.16 68.92 86982 0.4629 0.7128 2.5012
512 | 1.16 68.78 8.6857 0.4637 0.7128 2.5025 ..
1024 [ 117 6937 87495 0.4659 0.7149 2.5090 empirical data

Source: Hu et al. 2021, “LoRA: Low-Rank Adaptation of Large Language Models”
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QLoRA: Quantized LoRA

e Introduces 4-bit NormalFloat (nf4) data type for 4-bit quantization

e Supports double-quantization to reduce memory ~0.4 bits per parameter
(~3 GB for a 65B model)

e Unified GPU-CPU memory management reduces GPU memory usage
e LoRA adapters at every layer - not just attention layers

e Minimizes accuracy trade-off s - s
Optimizer /‘\
s B
e [ ] 00Qd O+ nin
[ L] ] ] e
Adapters
(16 biv l l l O 0O 0O | oo o
rt t ] N\
= D D) @ s
rrrrrrrr —
16-bit Transfor 16-bit Transformer 4-bit Transformer Paging Flo .
Source: Dettmers et al. 2023, “QLoRA: Efficient S A e e e B e e

Finetuning of Quantized LLMs”
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Prompt tuning with soft prompts
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Prompt tuning is not prompt engineering!

Prompt Model Completion

'Classify this review:! 5 , | Classify this review:

i i I loved this DVD!

' Sentiment: | Sentiment: Positive
Classify this review: Classify this review:
I don’t like this I don’t like this
chair. <chalx. . .
Sentiment: Sentiment: Negative

One-shot or Few-shot Inference
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Prompt tuning adds trainable “soft prompt” to inputs

Soft prompt

X, X, X, X, X, | X | X X | X ] | X | | X | | X || X,

Same length as
token vectors

£ e

The teacher teaches the student with the book.

<

tokens
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Soft prompts

O fire
Obook .
Q Jumps
Q fox Embeddings of each token
exist at unique pointin
L swim y multi-dimensional space
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Soft prompts
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Full Fine-tuning vs prompt tuning

Weights of model updated
during training

)

® DeepLearning.Al



Full Fine-tuning vs prompt tuning

Weights of model updated Weights of model frozen and
during training soft prompt trained

%

) )

Millions to Billions of 10K - 100K of parameters
parameter updated updated
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Prompt tuning for multiple tasks

Task A

Switch out soft prompt at
sk inference time to change task!

Task B _@

*
=
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Performance of prompt tuning

100
e Full Fine-tuning

0 % Multi-task Fine-tuning

Q .
S % Prompt tuning
B &0 m Prompt engineering
=S e
6 70
8

5 —
% 60
Vp)

» Prompt tuning can

1010 101 be as effective as full
Number of Model Parameters Fine-tuning for

larger models!

Source: Lester et al. 2021, “The Power of Scale for Parameter-Efficient Prompt Tuning”
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Interpretability of soft prompts

Trained soft-prompt
embedding does not

correspond to a known
token...
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Interpretability of soft prompts

Z

100%
completely ) o °
totally ) ©
altogether ) ...but nearest neighbors
. ® form a semantic group
entirely y with similar meanings.
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PEFT methods summary

Selective Reparameterization Additive
Select subset of initial Reparameterize model Add trainable layers or
LLM parameters to weights using a low-rank |  parameters to model
fine-tune representation

Adapters

LoRA
Soft Prompts
Prompt Tuning
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